ACCURATE RITZ WAVELENGTHS OF PARITY-FORBIDDEN [Co II] AND [V II] LINES OF ASTROPHYSICAL INTEREST

M. P. RUFFONI AND J. C. PICKERING

Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, UK; m.ruffoni@imperial.ac.uk Received 2013 March 26; accepted 2013 May 27; published 2013 July 15

ABSTRACT

We report a comprehensive list of accurate Ritz wavelengths for parity-forbidden [Co II] and [V II] lines obtained from the analysis of energy levels measured in the laboratory with Fourier transform emission spectroscopy. Such lines, particularly those in the infrared, are in demand for the analysis of low-density astrophysical plasmas in and around objects such as planetary nebulae, star-forming regions, and active galactic nuclei. Transitions between all known metastable levels of Co II and V II are included in our analysis, producing wavelengths for 1477 [V II] lines and 782 [Co II] lines. Of these, 170 [V II] lines and 171 [Co II] lines arise from transitions with calculated transition probabilities greater than 1×10^{-2} s⁻¹ and upper level excitations of less than 5 eV, and thus are likely to be observed in astrophysical spectra.

Key words: atomic data – line: profiles – methods: laboratory – techniques: spectroscopic *Online-only material:* machine-readable tables

1. INTRODUCTION

Stellar spectra feature a rich array of absorption lines, generated primarily from electric dipole (E1) transitions within the atoms of a star's atmosphere. These lines may be interpreted using synthetic spectra derived from atomic and molecular line lists, and radiative processes modeled using spectra containing hundreds of millions or billions of spectroscopic transitions.

In each case though, fundamental atomic data—such as line wavelengths and identifications, transition probabilities, and line broadening parameters such as hyperfine splitting—must be known. These can be supplied on a large scale through ab initio atomic and molecular calculations, or with greater accuracy on a smaller scale through direct experimental measurements in the laboratory.

However, in recent decades, developments in astronomical spectrographs have placed greater demands on the quantity and accuracy of such data. As a result, our understanding of stellar atmospheres is frequently not limited by the quality and quantity of astronomical spectra, but by the availability of accurate atomic and molecular data with which to analyze them. This is also true of other areas of astronomical spectroscopy, which may have additional, sometimes unique, requirements.

In contrast to stellar spectra, spectra from low-density astrophysical plasmas—such as those that exist in planetary nebulae and star-forming regions, and around active galactic nuclei—also contain strong emission lines. These are generated through a number of processes, and can lead to the observation of so-called forbidden lines, which arise from the radiative deexcitation of electrons from long-lived, low-lying metastable levels. For an overview of the processes at work in nebulae and active galactic nuclei, see Osterbrock & Ferland (2006), for example.

In general, metastable levels possess the same parity as the ground state of an atom,¹ and are of lower energy than any level of opposite parity. De-excitation of electrons through E1

transitions is thus forbidden, as can be seen from the selection rules in Table 1. Electrons populating these levels must therefore de-excite through alternative mechanisms.

Higher order, magnetic dipole (M1) and electric quadrupole (E2) transitions are allowed, but for neutral and weakly ionized atoms, their transition probabilities are many orders of magnitude smaller than those for E1 transitions. As a result, in high-density plasmas—such as those that exist in stellar atmospheres or plasmas generated in the laboratory—metastable levels are predominantly de-populated through collisions with other atoms, and thus no forbidden lines are seen. However, in low-density plasmas, collisions are rare, allowing enough time for M1 and E2 transitions to occur.

Forbidden lines are thus observed in these plasmas and are important in examining different regions of planetary nebulae (Smith et al. 2005, for example) and nebulae surrounding objects such as active galactic nuclei (Meijerink et al. 2007, for example). However, it is usual for only standard pairs of forbidden lines to be used in such analyses, most commonly those from [Fe II], which is at least in part due to a lack of accurate atomic data for other forbidden lines. Barlow (2012) recently reviewed developments arising from spectroscopic studies of ionized nebulae and concluded that there is an "urgent" requirement for more atomic data of such lines; particularly so for atoms in low ionization states.

In this paper, we present a comprehensive set of accurate Ritz wavelengths for forbidden lines in Co II and V II, calculated, in each case, for transitions between all known metastable levels. These include infrared lines of astrophysical importance, some of which have already been observed in such spectra; see Fang & Liu (2011), Hartman et al. (2004), and Arkhipova et al. (2001), for example.

2. LABORATORY DATA

The Ritz wavelengths of the parity-forbidden [Co II] and [V II] lines reported here were calculated, respectively, from the accurate Co II energy levels reported by Pickering et al. (1998) and the revised accurate V II energy levels measured by Thorne et al. (2013).

¹ Exceptions include levels that are metastable to E1, M1, and E2 transitions, such as the $1s^22s^2s^3P_2$ level in Be-like ions. In this case, decay to the $1s^22s^{21}S_0$ involves $\Delta J = 2$ and occurs through a magnetic quadrupole (M2) transition.

Figure 1. Energy level diagram showing the 65 known metastable levels in V II, which are of even parity. The levels belonging to the $3d^{3}({}^{4}F)4p$ $z^{5}G$ term, which is the lowest-lying term of odd parity, are also shown as dashed lines to indicate the upper limit on the region in which E1 transitions are forbidden.

In both cases, the laboratory Co II and V II spectra obtained by those researchers, and used in their spectral analyses, were generated in a water-cooled hollow cathode discharge lamp and measured on both the f/25 vacuum UV Fourier transform (FT) spectrometer at Imperial College London (Thorne et al. 1987) and the f/55 IR-visible FT spectrometer at the National Solar Observatory, Kitt Peak, Tucson, AZ (Brault 1976). Observed atomic lines were fitted using the GREMLIN program developed by J. W. Brault (unpublished), with care taken to account for hyperfine structure splitting by calculating a center of gravity wavenumber for each transition. The wavenumber scale was calibrated using the 26 Ar II lines recommended by Learner & Thorne (1988), and the ELCALC program (Radziemski & Kaufman 1969) was then used to revise the energy levels involving known transitions observed in the FT spectra. New energy levels were found using the unidentified observed lines.

The Co II spectra in Pickering et al. (1998) were wavelength calibrated using the Ar II measurements of Norlén (1973). By contrast, the V II spectra in Thorne et al. (2013) were wavelength calibrated using the more recent Ar II measurements of Whaling et al. (1995). Since the measurements of Norlén (1973) have now been superseded by those of Whaling et al. (1995), we increased the Co II energy levels of Pickering et al. (1998) by 7 parts in 10^8 —the value recommended by Whaling et al. (1995)—in our calculations of [Co II] Ritz wavelengths to account for the difference between the two calibration scales. In almost all cases, however, the resulting change in line wavelength was smaller than the overall wavelength uncertainty.

3. ANALYSIS AND RESULTS

3.1. Ritz Wavelengths

V II has a complex energy level structure, with 65 metastable levels of even parity between the $3d^4 a^5 D_0$ ground state and the lowest-lying level of odd parity; the $3d^3({}^4F)4p z^5G_2$ level at 34592.843(1) cm⁻¹ (Thorne et al. 2013). These levels are shown in Figure 1, grouped by their configuration and sub-configuration, with individual spin-orbit (LS) terms labeled. The levels belonging to the lowest-lying term of odd parity are also shown to indicate the upper limit on the region in which E1 transitions are forbidden.

 Table 1

 Transition Rules for Allowed E1 Transitions

 and Parity-forbidden M1 and E2 Transitions

Transition	Parity	ΔJ	Restrictions
E1	Changes	$0, \pm 1$	$(0 \nleftrightarrow 0)$
M1	No change	$0, \pm 1$	$(0 \leftrightarrow 0)$
E2	No change	$0,\pm 1,\pm 2$	$(0 \nleftrightarrow 0, 1/2 \nleftrightarrow 1/2, 0 \nleftrightarrow 1)$

Using the energy levels measured by Thorne et al. (2013) and the selection rules given in Table 1, we calculated accurate Ritz wavelengths for the 1477 possible parity-forbidden [V II] lines originating from M1 and E2 transitions between all 65 metastable levels. The most significant of these—those with $A \ge 1 \times 10^{-2}$ and upper level excitation of less than 5 eV—are listed in Table 2, with the remaining weaker lines listed in Table 4. The uncertainties in line wavelength were obtained by combining the uncertainty in the energy level value (typically 0.001 cm⁻¹ to 0.003 cm⁻¹) of each of the two levels involved in a given transition.

The structure of Co II is only marginally less complex, with 47 metastable levels between the $3d^8 a^3 D_4$ ground state and the $3d^7({}^4F)4p \ z^5F_5$ lowest-lying odd level at 45197.708(1) cm⁻¹ (Pickering et al. 1998), as shown in Figure 2. Accurate energies for 41 of these levels are given by Pickering et al. (1998), and another five—the $3d^64s^2a^5D_1$ level and the levels belonging to the c^3F and a^1F terms of the $3d^7({}^2F)4s$ configuration—by Sugar & Corliss (1985). The final metastable level, $3d^64s^2a^5D_0$, was omitted from our calculations as, to our knowledge, no experimental value exists for its energy.

By again applying the selection rules in Table 1, we calculated accurate Ritz wavelengths for the 782 possible parity-forbidden [Co II] lines originating from M1 and E2 transitions between the remaining 46 levels. The most significant lines are shown in Table 3, and the remaining weaker lines in Table 5. Where a transition takes place between levels reported by Pickering et al. (1998), the uncertainty in the Ritz wavenumber is as low as 0.001 cm^{-1} , but for those that include the levels from Sugar & Corliss (1985), this value is an order of magnitude larger due to the lower accuracy with which those energy levels are known.

Table 2Parity-forbidden Lines in V II with a Transition Probability of At Least 1×10^{-2} s⁻¹ and Upper Level Excitation Less Than 5 eV

Wavenumber	Unc.	λvac	Unc.	λair	Tran	sition	Energy	$(\mathrm{cm}^{-1})^{\mathrm{b}}$	Α	Туре
(cm^{-1})	(cm^{-1})	(Å)	(Å)	(Å) ^a	Lower Level	Upper Level	Lower Level	Upper Level	$(s^{-1})^{c}$	
5391.151	0.004	18548.9147	0.0124	18543.8509	$a^5 P_3$	$b^3 P_2$	13742	19133	1.71×10^{-2}	M1, E2
5649.623	0.004	17700.2961	0.0113	17695.4632	$a^{5}P_{1}$	$b^{3}P_{0}$	13512	19161	2.87×10^{-2}	M1
5654.515	0.004	17684.9827	0.0113	17680.1540	$a^{5}P_{1}$	$b^{3}P_{1}$	13512	19166	2.22×10^{-2}	M1, E2
7253.161	0.004	13787.0923	0.0069	13783.3234	$a^3 P_2$	$b^3 P_0$	11908	19161	1.02×10^{-2}	E2
7657.257	0.002	13059.5068	0.0038	13055.9357	a^3H_6	$b^3 H_6$	12706	20363	1.99×10^{-2}	M1, E2
7658.766	0.003	13056.9337	0.0054	13053.3633	a^3H_5	b^3H_5	12621	20280	1.77×10^{-2}	M1, E2
7697.282	0.004	12991.5989	0.0061	12988.0461	a^3H_4	b^3H_4	12545	20242	1.83×10^{-2}	M1, E2
8387.824	0.004	11922.0432	0.0064	11918.7809	$a^{3}P_{1}$	a^1S_0	11515	19903	2.41×10^{-2}	M1
9037.817	0.004	11064.6188	0.0044	11061.5892	b^1D_2	b^1F_3	25191	34229	3.38×10^{-2}	M1, E2
9255.938	0.002	10803.8753	0.0026	10800.9164	a^3F_4	a^3D_3	9098	18354	2.05×10^{-2}	M1, E2
9427.464	0.003	10607.3065	0.0036	10604.4009	a^3F_3	a^3D_1	8842	18270	1.13×10^{-2}	E2
9629.152	0.004	10385.1305	0.0039	10382.2852	$a^{3}F_{2}$	$a^{3}D_{1}$	8640	18270	1.25×10^{-2}	M1, E2
9695.545	0.004	10314.0154	0.0045	10311.1893	b^3D_3	c^3F_4	20623	30319	1.25×10^{-2}	M1, E2
9955.193	0.004	10045.0087	0.0036	10042.2555	b^3H_6	c^3F_4	20363	30319	2.92×10^{-2}	E2
10015.040	0.001	9984.9826	0.0014	9982.2457	a^3F_4	b^1G_4	9098	19113	1.71×10^{-2}	M1, E2
10025.129	0.006	9974.9340	0.0058	9972.1998	b^3H_4	c^3F_2	20242	30268	3.26×10^{-2}	E2
10026.138	0.004	9973.9301	0.0042	9971.1963	$b^{3}H_{5}$	$c^{3}F_{3}$	20280	30306	3.11×10^{-2}	E2
10270.864	0.004	9736.2792	0.0034	9733.6098	$c^{3}P_{2}$	d^3F_4	20343	30614	1.27×10^{-2}	E2
10270.879	0.001	9736.2650	0.0013	9733.5955	a^3F_3	b^1G_4	8842	19113	1.04×10^{-2}	M1, E2
10521.060	0.004	9504.7457	0.0033	9502.1389	a^3F_2	$b^3 P_0$	8640	19161	1.18×10^{-2}	E2
10525.952	0.004	9500.3283	0.0033	9497.7227	a^3F_2	$b^{3}P_{1}$	8640	19166	1.23×10^{-2}	M1, E2
10578.674	0.003	9452.9806	0.0025	9450.3878	$a^5 F_5$	$a^5 P_3$	3163	13742	1.85×10^{-2}	E2
10583.438	0.005	9448.7255	0.0048	9446.1338	$c^3 P_1$	d^3F_2	20090	30673	1.16×10^{-2}	M1, E2
10626.334	0.004	9410.5832	0.0037	9408.0019	a^5F_4	$a^5 P_2$	2968	13595	1.19×10^{-2}	E2
10785.764	0.004	9271.4804	0.0035	9268.9368	a^5F_3	$a^5 P_2$	2809	13595	1.08×10^{-2}	M1, E2
10824.591	0.002	9238.2243	0.0019	9235.6897	a^5F_2	$a^5 P_1$	2687	13512	1.23×10^{-2}	M1, E2
10837.702	0.003	9227.0483	0.0024	9224.5167	a^1H_5	b^1F_3	23391	34229	5.30×10^{-2}	E2
10906.759	0.002	9168.6265	0.0019	9166.1108	$a^5 F_1$	$a^5 P_1$	2605	13512	1.15×10^{-2}	M1, E2
11245.157	0.002	8892.7171	0.0018	8890.2760	$a^3 F_4$	$c^3 P_2$	9098	20343	1.81×10^{-2}	E2
11247.600	0.002	8890.7856	0.0018	8888.3450	$a^3 F_3$	$c^3 P_1$	8842	20090	1.56×10^{-2}	E2
11259.411	0.005	8881.4593	0.0042	8879.0212	$a^5 D_1$	$a^3 P_0$	36	11296	1.93×10^{-2}	M1
11318.330	0.007	8835.2257	0.0052	8832.8001	$a^1 D_2$	$d^3 P_1$	20981	32299	1.84×10^{-2}	M1. E2
11408.141	0.002	8765.6701	0.0017	8763.2633	$a^5 D_2$	$a^3 P_1$	107	11515	1.52×10^{-2}	M1. E2
11417.652	0.006	8758.3682	0.0045	8755.9634	$b^3 D_3$	$d^3 P_2$	20623	32041	6.46×10^{-2}	M1. E2
11439.123	0.010	8741.9289	0.0080	8739.5286	a^1D_2	$d^3 P_0$	20981	32420	7.03×10^{-2}	E2
11449.288	0.003	8734.1676	0.0022	8731.7694	$a^3 F_2$	$c^3 P_1$	8640	20090	2.17×10^{-2}	M1. E2
11475.453	0.004	8714.2529	0.0032	8711.8601	$b^3 P_1$	d^3F_3	19166	30642	1.44×10^{-2}	E2
11481.119	0.004	8709.9524	0.0032	8707.5607	$b^3 P_2$	$d^3 F_4$	19133	30614	2.58×10^{-2}	E2
11492.641	0.002	8701.2202	0.0017	8698.8309	$a^5 F_5$	a^3G_5	3163	14656	1.37×10^{-2}	M1. E2
11500.996	0.002	8694.8991	0.0017	8692.5115	a^3F_3	$c^3 P_2$	8842	20343	1.60×10^{-2}	M1. E2
11516.308	0.004	8683.3384	0.0027	8680.9540	$a^3 F_2$	$c^3 P_0$	8640	20157	3.74×10^{-2}	E2
11525.094	0.003	8676 7188	0.0024	8674.3361	$a^3 F_4$	$h^3 D_3$	9098	20623	1.60×10^{-2}	M1 E2
11648.390	0.003	8584 8774	0.0023	8582,5195	$b^3 F_2$	$b^1 D_2$	13543	25191	1.08×10^{-2}	M1 E2
11676.274	0.007	8564 3759	0.0049	8562.0236	$h^3 D_3$	$d^3 P_1$	20623	32299	5.62×10^{-2}	E2
11680.097	0.004	8561.5727	0.0030	8559.2212	a^3F_3	$b^3 D_1$	8842	20522	1.51×10^{-2}	E2
11682.184	0.007	8560.0432	0.0049	8557.6921	$h^3 D_2$	$d^3 P_1$	20617	32299	4.01×10^{-2}	M1 E2
11697.589	0.005	8548.7702	0.0039	8546.4221	$c^{3}P_{2}$	$d^3 P_2$	20343	32041	1.11×10^{-1}	M1. E2
11699 471	0.002	8547.3950	0.0016	8545 0473	$a^5 D_3$	$a^3 P_2$	209	11908	1.10×10^{-2}	M1 E2
11777 110	0.007	8491 0475	0.0052	8488 7150	$h^3 D_1$	$d^3 P_1$	20522	32299	9.32×10^{-2}	M1 E2
11802 977	0.010	8472 4388	0.0032	8470 1113	$b^3 D_2$	$d^3 P_0$	20522	32420	1.78×10^{-1}	E2
11881 785	0.004	8416 2439	0.0072	8413 9316	$a^3 F_2$	$h^3 D_1$	8640	20522	1.15×10^{-2}	M1 E2
11883.965	0.006	8414 7000	0.0032	8412 3881	$c^{3}P_{0}$	$d^3 P_2$	20157	32041	3.83×10^{-2}	F2
11005.905	0.005	8367 5111	0.0041	8365 2120	$c^{3}P_{1}$	$d^3 P_2$	20197	32041	1.06×10^{-1}	M1 F2
11956 211	0.005	8363 8537	0.0030	8361 5556	$c^{3}P_{2}$	$d^3 P_1$	20050	32041	1.00×10^{-1}	M1 E2
12077 004	0.000	8280 1003	0.0044	8777 0738	$c^{3} P_{2}$	$d^3 \mathbf{P}_0$	20343	32499	8.69×10^{-2}	E2
12138 877	0.010	8737 00/2	0.0070	8725 7202	$a^3 F_2$	$a^1 D_2$	20345	20081	1.86×10^{-2}	ыл M1 Бо
12130.077	0.005	8100 2718	0.0021	8188 0206	a 1'3	$d^3 \mathbf{p}$	20000	32200	2.54×10^{-2}	M1 E2
12209.007	0.000	8156 5516	0.0042	8154 2006	$a^3 D$	d ³ E	18251	30614	2.34×10 2.25 $\sim 10^{-2}$	M1 E2
12200.065	0.004	8103 3567	0.0024	8101 1200	$a^{3}E_{-}$	$a^{1}D_{1}$	8640	20014	2.23×10^{-2}	M1 E2
12340.303	0.004	0103.3307 8008 5457	0.0024	0101.1290 8006 2102	$a^3 D$	$a D_2$ $a^3 F$	18204	20901	2.01×10^{-2}	M1 E2
1234/.090	0.004	0070.243/	0.0024	0090.3193	$a^3 D$	а гз 13 г	10294	20672	1.03×10^{-2}	M1 E2
12319.211	0.005	00/0.0003 8060 1004	0.0035	00/0.8340	$a^2 D_2$	$a^{-}r_{2}$ $a^{3}r$	18270	300/3	1.14×10^{-2} 1.72×10^{-2}	M1, E2 M1 E2
12403.374	0.000	0002.1924	0.0038	0039.9/30	$a^{2}D_{1}$	<i>a</i> ² <i>F</i> ₂	102/0	200/3	1.72×10^{-2}	M1 E2
128/4.321	0.006	//0/.3999	0.0035	//05.2629	$b^{-}P_{1}$	$a^{-}P_{2}$	19100	32041	1.4/×10 ~	MI, E2

				Ta (Co	able 2 ntinued)					
Wavenumber	Unc.	λvac	Unc.	λair	Tran	sition	Energy	(cm ⁻¹) ^b	Α	Туре
(cm^{-1})	(cm^{-1})	(Å)	(Å)	(Å) ^a	Lower Level	Upper Level	Lower Level	Upper Level	$(s^{-1})^{c}$	
12907.844	0.006	7747.2272	0.0035	7745.0956	$b^3 P_2$	$d^3 P_2$	19133	32041	1.92×10^{-2}	M1, E2
13255.598	0.004	7543.9825	0.0023	7541.9058	$a^5 D_4$	$a^{5}P_{2}$	339	13595	1.85×10^{-1}	E2
13269.814	0.001	7535.9007	0.0008	7533.8261	$a^{5}D_{4}$	$b^{3}F_{4}$	339	13609	1.31×10^{-2}	M1, E2
13287.259	0.010	7526.0067	0.0059	7523.9348	$b^{3}P_{2}$	$d^{5}P_{0}$	19133	32420	1.91×10^{-2}	E2
13303.009	0.002	7517.0963	0.0013	7515.0269	$a^{5}D_{3}$	$a^{3}P_{1}$	209	13512	2.21×10^{-1}	E2 M1 E2
13370.017	0.003	7479.4221	0.0010	7477.4245	$a^5 F_5$	0°G5 a5 D.	220	10555	2.88×10^{-2} 1.76 × 10 ⁻¹	M1, E2 M1 E2
13402.313	0.002	7401.2802	0.0012	7459.2954	$a^5 D_2$	$a^5 P_1$	107	13742	1.70×10^{-1} 1.43×10^{-1}	M1, E2 M1 E2
13453 139	0.002	7433 2095	0.0012	7431 2240	$a^5 F_4$	h^3G_4	2968	16422	1.43×10^{-2} 1.57 × 10 ⁻²	M1 E2
13475.697	0.003	7420.7664	0.0016	7418.7842	$a^5 D_1$	$a^5 P_1$	36	13512	3.79×10^{-2}	M1, E2
13488.080	0.004	7413.9537	0.0023	7411.9732	a^5D_2	$a^5 P_2$	107	13595	6.33×10^{-2}	M1. E2
13532.850	0.002	7389.4265	0.0012	7387.4525	a^5D_3	$a^5 P_3$	209	13742	1.55×10^{-1}	M1, E2
13558.621	0.004	7375.3813	0.0024	7373.4110	a^5D_1	$a^5 P_2$	36	13595	1.08×10^{-1}	M1, E2
13594.723	0.005	7355.7953	0.0027	7353.8301	$a^{5}D_{0}$	$a^5 P_2$	0	13595	5.27×10^{-2}	E2
13634.997	0.002	7334.0684	0.0012	7332.1088	a^5D_2	$a^5 P_3$	107	13742	7.67×10^{-2}	M1, E2
13686.808	0.005	7306.3055	0.0029	7304.3532	a^3D_3	$d^3 P_2$	18354	32041	$6.92 imes 10^{-2}$	M1, E2
13705.538	0.003	7296.3207	0.0015	7294.3710	$a^{5}D_{1}$	$a^5 P_3$	36	13742	1.83×10^{-2}	E2
13746.764	0.005	7274.4393	0.0028	7272.4953	a^3D_2	$d^3 P_2$	18294	32041	1.34×10^{-2}	M1, E2
13785.545	0.004	7253.9751	0.0019	7252.0365	$b^3_{2}G_5$	$c^{3}F_{4}$	16533	30319	8.54×10^{-2}	M1, E2
13884.861	0.003	7202.0887	0.0016	7200.1636	$b^{3}G_{4}$	$c^{3}F_{3}$	16422	30306	5.58×10^{-2}	M1, E2
13897.000	0.003	7195.7977	0.0016	7193.8743	$b^{3}G_{4}$	$c^{3}F_{4}$	16422	30319	1.38×10^{-2}	M1, E2
13926.530	0.005	7180.5396	0.0028	7178.6202	$b^{3}G_{3}$	$c^{3}F_{2}$	16341	30268	4.80×10^{-2}	M1, E2
13945.430	0.006	71/0.80/9	0.0033	7168.8911	$a^{3}D_{3}$	$d^{3}P_{1}$	18354	32299	5.96×10^{-2}	E2 M1 E2
13905.408	0.004	7140 1102	0.0018	7128.0357	$b^3 G_3$	$C^{3}F_{3}$	10341	30306	1.28×10^{-2}	M1, E2 M1 E2
14003.380	0.000	7140.1102	0.0032	7125 8087	$a^3 D_2$	$d^3 P_1$	18294	32299	1.93×10^{-2}	M1, E2 M1 E2
14029.745	0.007	7101 8052	0.0034	7099 9063	b^3G_5	$d^3 F_4$	16533	30614	1.72×10^{-1}	M1 F2
14108 784	0.004	7087 7830	0.0018	7085 8879	b^3G_5	$d^3 F_2$	16533	30642	3.20×10^{-2}	E2
14126.179	0.010	7079.0551	0.0051	7077.1622	a^3D_2	$d^3 P_0$	18294	32420	1.18×10^{-1}	E2
14192.382	0.003	7046.0336	0.0016	7044.1493	b^3G_4	d^3F_4	16422	30614	3.72×10^{-2}	M1, E2
14220.239	0.003	7032.2306	0.0016	7030.3500	b^3G_4	d^3F_3	16422	30642	$1.69 imes 10^{-1}$	M1, E2
14251.560	0.005	7016.7757	0.0025	7014.8991	b^3G_4	d^3F_2	16422	30673	$4.87 imes 10^{-2}$	E2
14300.786	0.004	6992.6226	0.0018	6990.7523	b^3G_3	d^3F_3	16341	30642	5.43×10^{-2}	M1, E2
14332.107	0.005	6977.3412	0.0026	6975.4748	b^3G_3	d^3F_2	16341	30673	2.44×10^{-1}	M1, E2
15115.923	0.002	6615.5404	0.0010	6613.7685	b^1G_4	$b^1 F_3$	19113	34229	5.66×10^{-2}	M1, E2
15385.438	0.002	6499.6525	0.0009	6497.9108	$a^{5}F_{4}$	$a^{3}D_{3}$	2968	18354	1.81×10^{-2}	M1, E2
15484.912	0.002	6457.8991	0.0009	6456.1683	$a^{3}F_{3}$	$a^{3}D_{2}$	2809	18294	2.64×10^{-2}	M1, E2
15582.306	0.003	6417.5354	0.0013	6415.8151	$a^3 F_2$	$a^{3}D_{1}$	2687	18270	2.83×10^{-2}	M1, E2
15662.921	0.003	6384.5052	0.0013	6382.7935	$a^{5}G_{5}$	$c^3 F_4$	14656	30319	1.12×10^{-2}	M1, E2
15004.474	0.003	6340 0760	0.0013	6347 3745	$a^3 F_1$	$a^2 D_1$ $a^3 E_2$	2005	18270	1.48×10^{-2} 1.63×10^{-2}	M1, E2 M1 E2
15805 763	0.005	6326 8062	0.0013	6325 1096	a^3G_2	$c^{3}F_{2}$	14350	30268	1.03×10^{-2}	M1, E2 M1 E2
15844 641	0.005	6311.2822	0.0022	6309,5895	a^3G_2	$c^{3}F_{2}$	14462	30306	1.40×10^{-2}	M1, E2
15958.303	0.003	6266.3304	0.0012	6264.6495	a^3G_5	d^3F_4	14656	30614	4.19×10^{-1}	M1. E2
15986.160	0.003	6255.4109	0.0012	6253.7329	a^3G_5	d^3F_3	14656	30642	7.37×10^{-2}	E2
16057.842	0.003	6227.4869	0.0012	6225.8161	a^3G_4	d^3F_4	14556	30614	7.60×10^{-2}	M1, E2
16085.699	0.003	6216.7022	0.0012	6215.0342	a^3G_4	d^3F_3	14556	30642	$3.20 imes 10^{-1}$	M1, E2
16117.020	0.005	6204.6210	0.0020	6202.9561	a^3G_4	d^3F_2	14556	30673	9.10×10^{-2}	E2
16180.019	0.004	6180.4625	0.0014	6178.8039	a^3G_3	d^3F_3	14462	30642	8.90×10^{-2}	M1, E2
16211.340	0.005	6168.5215	0.0020	6166.8661	a^3G_3	d^3F_2	14462	30673	3.78×10^{-1}	M1, E2
16317.939	0.003	6128.2249	0.0011	6126.5799	$a^{1}G_{4}$	$b^1 F_3$	17911	34229	4.78×10^{-2}	M1, E2
16348.985	0.003	6116.5877	0.0012	6114.9457	$a^{3}F_{3}$	$b^1 D_2$	8842	25191	3.09×10^{-2}	M1, E2
16550.673	0.004	6042.0504	0.0013	6040.4278	$a^{3}F_{2}$	$b^{1}D_{2}$	8640	25191	1.53×10^{-2}	M1, E2
16700 580	0.003	5988.9384	0.0011	5987.5297	$D^3 F_4$ $h^3 F_4$	$C^3 F_3$	13609	30306	0.95×10^{-2}	M1, E2 M1 E2
10/09.389	0.005	JY04.J8// 5070 1211	0.0011	3982.9800 5077 5140	$b^3 F_{-}$	$C^{-}F_{4}$	13542	30269	2.43×10^{-1}	M1 E2
10724.000	0.005	5965 2545	0.0018	5963 6510	$b^3 F_2$	$c^3 F_2$	13343	30208	1.02×10^{-1} 1.81 $\times 10^{-1}$	M1 E2
16775 883	0.003	5960 9381	0.0011	5959 3366	$h^3 F_2$	$c^3 F_4$	13543	30310	5.58×10^{-2}	M1 F2
16776.628	0.005	5960.6734	0.0019	5959.0720	$b^3 F_2$	$c^3 F_2$	13491	30268	2.33×10^{-1}	M1 E2
16815.506	0.004	5946.8921	0.0013	5945.2943	$b^3 F_2$	$c^3 F_3$	13491	30306	7.35×10^{-2}	M1. E2
17004.971	0.003	5880.6334	0.0011	5879.0528	$b^3 F_4$	d^3F_4	13609	30614	5.13×10^{-2}	M1, E2
17032.828	0.003	5871.0157	0.0011	5869.4376	$b^3 F_4$	$d^3 F_3$	13609	30642	$2.84 imes 10^{-2}$	M1, E2
17071.265	0.003	5857.7967	0.0011	5856.2220	$b^3 F_3$	d^3F_4	13543	30614	1.31×10^{-2}	M1, E2
17099.122	0.003	5848.2535	0.0011	5846.6813	$b^3 F_3$	d^3F_3	13543	30642	1.62×10^{-2}	M1, E2

337 1	TT		TT	<u>``</u>		•,•		(-1)h		
Wavenumber	Unc.	λvac	Unc.	λair	Tran	sition	Energy	(cm ⁻¹) ⁶	Α	Type
(cm^{-1})	(cm^{-1})	(Å)	(Å)	(Å) ^a	Lower Level	Upper Level	Lower Level	Upper Level	$(s^{-1})^{c}$	
17130.443	0.005	5837.5607	0.0017	5835.9912	b^3F_3	d^3F_2	13543	30673	2.31×10^{-2}	M1, E2
17182.205	0.005	5819.9748	0.0018	5818.4099	$b^3 F_2$	d^3F_2	13491	30673	1.45×10^{-2}	M1, E2
17654.594	0.003	5664.2481	0.0010	5662.7236	a^5F_4	b^3D_3	2968	20623	4.21×10^{-2}	M1, E2
17722.411	0.005	5642.5731	0.0017	5641.0543	a^3H_4	$c^3 F_2$	12545	30268	3.11×10^{-2}	E2
17808.114	0.003	5615.4178	0.0010	5613.9060	a^5F_3	$b^3 D_2$	2809	20617	3.25×10^{-2}	M1, E2
17834.939	0.004	5606.9718	0.0013	5605.4622	a^5F_2	$b^3 D_1$	2687	20522	4.50×10^{-2}	M1, E2
17907.832	0.003	5584.1489	0.0010	5582.6452	a^3H_6	d^3F_4	12706	30614	1.18	E2
17917.107	0.004	5581.2582	0.0013	5579.7552	a^5F_1	b^3D_1	2605	20522	2.26×10^{-2}	M1, E2
17992.425	0.003	5557.8945	0.0010	5556.3976	a^3H_5	d^3F_4	12621	30614	1.27×10^{-1}	M1, E2
18020.282	0.003	5549.3027	0.0010	5547.8081	a^3H_5	d^3F_3	12621	30642	1.15	E2
18096.667	0.004	5525.8794	0.0011	5524.3909	a^3H_4	d^3F_3	12545	30642	1.58×10^{-1}	M1, E2
18127.988	0.005	5516.3320	0.0016	5514.8459	a^3H_4	d^3F_2	12545	30673	1.29	E2
18171.968	0.003	5502.9813	0.0010	5501,4986	a^5F_3	$a^1 D_2$	2809	20981	1.71×10^{-2}	M1. E2
18398.128	0.004	5435.3356	0.0011	5433.8705	$a^3 P_2$	$c^3 F_3$	11908	30306	3.39×10^{-2}	M1, E2
18410.267	0.004	5431.7518	0.0011	5430.2875	$a^3 P_2$	$c^3 F_4$	11908	30319	9.30×10^{-2}	E2
18431.696	0.005	5425.4367	0.0015	5423.9741	$b^3 F_4$	$d^3 P_2$	13609	32041	1.06×10^{-1}	E2
18497.990	0.005	5405.9928	0.0015	5404.5352	$b^3 F_3$	$d^3 P_2$	13543	32041	2.72×10^{-2}	M1, E2
18752.727	0.005	5332.5578	0.0015	5331.1192	$a^3 P_1$	$c^3 F_2$	11515	30268	5.14×10^{-2}	M1. E2
18756.612	0.006	5331.4532	0.0017	5330.0150	$b^3 F_3$	$d^3 P_1$	13543	32299	1.01×10^{-1}	E2
18791.605	0.004	5321.5252	0.0010	5320.0895	$a^3 P_1$	$c^3 F_3$	11515	30306	6.96×10^{-2}	E2
18808.374	0.006	5316.7807	0.0018	5315.3462	$b^3 F_2$	$d^3 P_1$	13491	32299	5.01×10^{-2}	M1. E2
18929.167	0.010	5282.8526	0.0028	5281,4270	$b^3 F_2$	$d^3 P_0$	13491	32420	1.58×10^{-1}	E2
18971.998	0.007	5270.9261	0.0020	5269,5035	$a^3 P_0$	$c^3 F_2$	11296	30268	5.22×10^{-2}	E2
20132.374	0.005	4967.1241	0.0013	4965,7799	$a^3 P_2$	$d^3 P_2$	11908	32041	3.50×10^{-2}	M1. E2
20390.996	0.006	4904,1253	0.0015	4902.7974	$a^3 P_2$	$d^3 P_1$	11908	32299	7.02×10^{-2}	M1. E2
20511.789	0.010	4875.2452	0.0024	4873.9246	$a^3 P_2$	$d^3 P_0$	11908	32420	8.95×10^{-2}	E2
20525.851	0.005	4871.9052	0.0013	4870.5855	$a^3 P_1$	$d^3 P_2$	11515	32041	4.48×10^{-2}	M1. E2
20745.122	0.007	4820.4103	0.0016	4819.1039	$a^3 P_0$	$d^3 P_2$	11296	32041	1.99×10^{-2}	E2
20784.473	0.006	4811.2839	0.0015	4809,9798	$a^3 P_1$	$d^3 P_1$	11515	32299	2.30×10^{-2}	M1. E2
21208.500	0.003	4715.0906	0.0007	4713.8113	$a^3 F_4$	$c^3 F_3$	9098	30306	1.60×10^{-2}	M1. E2
21220.639	0.003	4712.3934	0.0007	4711.1148	$a^3 F_4$	$c^3 F_4$	9098	30319	4.26×10^{-2}	M1. E2
21425.461	0.005	4667.3441	0.0011	4666.0770	a^3F_3	$c^3 F_2$	8842	30268	1.80×10^{-2}	M1. E2
21464.339	0.003	4658.8903	0.0007	4657.6253	$a^3 F_3$	$c^3 F_3$	8842	30306	2.73×10^{-2}	M1. E2
21516.021	0.003	4647.6995	0.0007	4646.4374	$a^3 F_4$	$d^3 F_4$	9098	30614	1.10×10^{-1}	M1. E2
21543.878	0.003	4641.6899	0.0007	4640.4293	$a^3 F_4$	d^3F_3	9098	30642	2.89×10^{-2}	M1. E2
21627.149	0.005	4623.8180	0.0012	4622.5620	$a^3 F_2$	$c^3 F_2$	8640	30268	3.20×10^{-2}	M1. E2
21666.027	0.004	4615.5209	0.0008	4614.2671	$a^3 F_2$	$c^3 F_3$	8640	30306	1.07×10^{-2}	M1. E2
21771.860	0.003	4593.0848	0.0007	4591.8368	a^3F_3	$d^3 F_4$	8842	30614	2.45×10^{-2}	M1. E2
21799.717	0.003	4587.2155	0.0007	4585.9690	a^3F_2	d^3F_2	8842	30642	8.08×10^{-2}	M1. E2
21831.038	0.005	4580.6342	0.0011	4579.3894	a^3F_3	$d^3 F_2$	8842	30673	4.29×10^{-2}	M1. E2
22001.405	0.004	4545,1643	0.0007	4543 9285	$a^3 F_2$	$d^3 F_2$	8640	30642	3.16×10^{-2}	M1 E2
22032.726	0.005	4538,7030	0.0011	4537.4689	$a^3 F_2$	d^3F_2	8640	30673	1.03×10^{-1}	M1. E2
32383.948	0.010	3087.9496	0.0010	3087.0801	a^5D_1	$d^3 P_0$	36	32420	1.10×10^{-2}	M1

Table 2

Notes.

^a Calculated using Birch & Downs (1994) for $\lambda_{vac} > 7500$ Å, and Bönsch & Potulski (1998) for all other cases.

^b Truncated energy. For the exact value, see Thorne et al. (2013).

^c Calculated transition probabilities derived from the log(gA) values given by Kurucz (2006b).

(This table is also available in a machine-readable form in the online journal.)

3.2. Transition Probabilities

Also included in Tables 2–5 are calculated transition probabilities, A. In general, these were derived from the log(gA)values in Kurucz (2006a, 2006b), but for Co II, the more detailed calculations reported by Raassen et al. (1998) and Quinet (1998) were used instead, where available.

The transition probabilities of Raassen et al. (1998) were obtained through a semi-empirical method. First, the angular coefficients of the transition matrix in pure LS coupling were found using the Racah algebra, multiplied by transition integrals from a relativistic Hartree–Fock code (Parpia et al. 1996), and corrected for core polarization (Hameed 1972; Laughlin 1992). The resulting LS transition matrix was then transformed into the actual intermediate coupling by using orthogonal operators (Hansen et al. 1998); adjusting the parameters of the model Hamiltonian to yield eigenvalues as close as possible to the experimental energies of Pickering et al. (1998).

Quinet (1998) used the approximately relativistic Hartree– Fock method (Cowan & Griffin 1976), followed by a least-squares optimization of the radial parameters to reduce discrepancies between calculated energy levels and the

Table 3Parity-forbidden Lines in Co II with a Transition Probability of At Least $1 \times 10^{-2} \text{ s}^{-1}$ and Upper Level Excitation Less Than 5 eV

Wavenumber	Unc.	λvac	Unc.	λair	Tran	sition	Energy	$(\mathrm{cm}^{-1})^{\mathrm{b}}$	A	Туре
(cm^{-1})	(cm^{-1})	(Å)	(Å)	$(\text{\AA})^{a}$	Lower Level	Upper Level	Lower Level	Upper Level	$(s^{-1})^{c}$	
531.801	0.001	188040.2500	0.5001	187988.9985	a^5F_4	a^5F_3	4029	4561	1.09×10^{-2}	M1
678.494	0.001	147385.2282	0.3072	147345.0570	$a^{5}F_{5}$	a^5F_4	3350	4029	1.24×10^{-2}	M1
895.471	0.001	111673.0670	0.1764	111642.6289	$b^3 F_4$	b^3F_3	9813	10708	1.88×10^{-2}	M1
950.324	0.002	105227.2625	0.2476	105198.5811	a^3F_4	a^3F_3	0	950	2.24×10^{-2}	M1
1156.905	0.003	86437.5147	0.2113	86413.9543	$a^{3}D_{2}$	$a^{3}D_{1}$	28112	29269	3.17×10^{-2}	M1
1243.097	0.001	80444.2397	0.0915	80422.3125	$b^{3}P_{2}$	$c^{3}P_{1}$	24074	25318	2.65×10^{-2}	M1
1609.411	0.002	62134.5281	0.0863	62117.5908	a^1D_2	$a^{3}P_{2}$	11651	13261	3.08×10^{-2}	M1
1683.639	0.002	59395.1512	0.0789	59378.9604	$a^{1}P_{1}$	$a^{3}D_{1}$	27585	29269	1.49×10^{-2}	M1
1753.044	0.001	57043.6298	0.0460	57028.0798	$a^{1}D_{2}$	$a^{3}P_{1}$	11651	13404	2.87×10^{-2}	M1
2267.621	0.001	44099.0770	0.0275	44087.0542	$c^{3}P_{1}$	$a^{1}P_{1}$	25318	27585	1.18×10^{-2}	M1
2321.755	0.001	43070.8636	0.0262	43059.1210	b^1G_4	$a^{3}H_{5}$	25147	27469	1.49×10^{-2}	Ml
2597.973	0.002	38491.5444	0.0331	38481.0495	$c^{3}P_{2}$	$a^{3}D_{3}$	24886	27484	1.18×10^{-2}	MI
2754.928	0.002	36298.5868	0.0295	36288.6893	$b^{1}G_{4}$	$a^{3}H_{4}$	25147	27902	1.72×10^{-2}	MI
31/3.659	0.001	31509.3692	0.0140	31500.7764	$b^{3}P_{0}$	$a^{1}P_{1}$	24411	2/585	3.94×10^{-2}	MI
3225.472	0.002	31003.2122	0.0215	30994.7573	$c^{3}P_{2}$	$a^{3}D_{2}$	24886	28112	1.68×10^{-2}	MI M1
3317.730	0.001	30140.8521	0.0128	30132.0321	$b^{3}P_{1}$	$a^{2}P_{1}$	24207	27585	4.23×10^{-2}	M1
3407.455	0.003	29347.4141	0.0244	29559.4102	$C^2 P_0$	$a^2 D_1$	25801	29209	1.89×10^{-2}	M1
3409.953	0.002	29323.9133	0.0192	29317.9173	$D^{2}P_{2}$	$a^2 D_3$	24074	2/484	1.31×10^{-2}	M1
2510 719	0.002	20009.0004	0.0187	20001.9212	$a^{3} H_{6}$	$a \Pi_5$	2/100	20207	1.11×10^{-2}	M1
3510.718	0.001	20404.1990	0.0113	28470.4310	$D^{*}P_{2}$	$a P_1$	24074	27363	2.87×10^{-2}	M1
3522.704	0.001	20307.2023	0.0114	20379.3399	$a^1 B$	$b^{1}D_{1}$	21025	23147	1.41×10^{-2}	M1
3014.274	0.002	27008.0719	0.0171	27000.3234	$a^3 D$	$b^1 D_2$	27383	31199	1.97×10^{-2}	M1
3051 260	0.003	25308 3800	0.0203	20910.2738	$a^{3} P$	$a^3 D_1$	25318	20260	5.20×10^{-2}	M1
4037 452	0.002	23308.3807	0.0143	23301.4770	$h^3 P_2$	$a^3 D_2$	23318	29209	7.10×10^{-2} 2.20 × 10 ⁻²	M1
4382 377	0.002	22818 6651	0.0137	24701.5578	$c^{3}P_{2}$	a^3D_1	24886	20112	6.44×10^{-2}	M1
4857 298	0.002	20587 5763	0.0095	20581 9576	$h^3 P_0$	$a^3 D_1$	24000	29269	1.52×10^{-2}	M1
5481.215	0.002	18244 1289	0.0074	18239 1480	a^3G_5	$a^3 H_6$	21625	27106	3.80×10^{-2}	M1
5487.730	0.002	18222.4696	0.0074	18217.4946	a^3G_3	$a^3 H_A$	22414	27902	2.85×10^{-2}	M1
5844.459	0.001	17110.2223	0.0041	17105.5500	a^3G_5	a^3H_5	21625	27469	3.87×10^{-2}	M1
5892.816	0.002	16969.8143	0.0064	16965.1801	a^3G_4	a^3H_4	22009	27902	6.87×10^{-2}	M1
5928.741	0.002	16866.9863	0.0064	16862.3800	a^5P_1	$b^3 P_1$	18339	24267	4.20×10^{-2}	M1
6072.838	0.002	16466.7645	0.0061	16462.2671	$a^5 P_1$	$b^3 P_0$	18339	24411	6.94×10^{-2}	M1
6117.161	0.001	16347.4515	0.0038	16342.9866	a^5F_1	$b^3 F_2$	5205	11322	1.35×10^{-2}	M1
6302.912	0.001	15865.6813	0.0036	15861.3474	$a^5 P_3$	$b^3 P_2$	17772	24074	1.61×10^{-2}	M1
6313.012	0.002	15840.2983	0.0056	15835.9713	$c^3 P_2$	b^1D_2	24886	31199	1.61×10^{-1}	M1
6462.365	0.001	15474.2100	0.0034	15469.9825	a^5F_5	b^3F_4	3350	9813	2.81×10^{-2}	M1
6547.759	0.002	15272.3998	0.0052	15268.2272	$a^5 P_1$	$c^{3}P_{2}$	18339	24886	1.87×10^{-2}	M1
6854.972	0.001	14587.9506	0.0030	14583.9641	$a^{5}P_{2}$	$c^{3}P_{2}$	18031	24886	$9.26 imes 10^{-2}$	M1
6932.030	0.002	14425.7877	0.0047	14421.8453	$b^3 P_1$	b^1D_2	24267	31199	2.56×10^{-2}	M1
6978.876	0.002	14328.9540	0.0046	14325.0379	$a^5 P_1$	$c^{3}P_{1}$	18339	25318	1.33×10^{-1}	M1
7114.892	0.001	14055.0261	0.0028	14051.1845	$a^5 P_3$	$c^{3}P_{2}$	17772	24886	1.68×10^{-1}	M1
7522.682	0.003	13293.1322	0.0050	13289.4976	$a^{5}P_{1}$	$c^{3}P_{0}$	18339	25861	1.35×10^{-1}	M1
8557.829	0.001	11685.2072	0.0019	11682.0092	a^3G_4	a^1H_5	22009	30567	4.33×10^{-2}	M1
8942.645	0.001	11182.3744	0.0018	11179.3128	a^3G_5	a^1H_5	21625	30567	1.05×10^{-1}	M1
9246.498	0.002	10814.9057	0.0026	10811.9438	$a^5 P_1$	$a^1 P_1$	18339	27585	2.04×10^{-2}	M1
9452.946	0.002	10578.7131	0.0025	10575.8153	$a^{5}P_{2}$	a^3D_3	18031	27484	1.65×10^{-2}	M1
9712.866	0.002	10295.6227	0.0024	10292.8016	$a^{5}P_{3}$	$a^{3}D_{3}$	17772	27484	5.69×10^{-2}	M1
9724.663	0.002	10283.1330	0.0024	10280.3153	$a^{3}F_{2}$	$b^3 F_2$	1597	11322	2.69×10^{-2}	M1, E2
9758.007	0.002	10247.9946	0.0023	10245.1865	$a^{\circ}F_{3}$	$b^{3}F_{3}$	950	10708	2.25×10^{-2}	E2
9773.232	0.003	10232.0300	0.0030	10229.2262	$a^{\circ}P_{1}$	$a^{3}D_{2}$	18339	28112	1.21×10^{-2}	M1
9812.860	0.001	10190.7093	0.0015	10187.9166	$a^{3}F_{4}$	$b^{5}F_{4}$	0	9813	3.43×10^{-2}	E2
10054.080	0.002	9946.2112	0.0022	9943.4848	$a^{3}F_{2}$	$a^{1}D_{2}$	1597	11651	7.91×10^{-2}	M1, E2
10080.445	0.002	9920.1973	0.0022	9917.4779	$a^{3}P_{2}$	$a^{3}D_{2}$	18031	28112	4.37×10^{-2}	M1
10371.536	0.002	9641.7737	0.0021	9639.1298	$a^{3}F_{3}$	$b^{3}F_{2}$	950	11322	2.02×10^{-2}	M1, E2
10/00.953	0.002	9344.9623	0.0020	9342.3988	$a^3 F_3$	$a^{+}D_{2}$	950	11651	$1./1 \times 10^{-1}$	M1
10/08.331	0.001	9338.5237	0.0012	9335.9619	$a^3 F_4$	$b^3 F_3$	0	10708	1.51×10^{-2}	E2
11006 604	0.001	9205.508/	0.0012	9202.9829	$a^{3}P_{1}$	$D^{3}P_{1}$	13404	24207	1.18×10^{-2}	E2
11000.094	0.002	9085.3804	0.0018	9082.8872	$a^{2}P_{2}$	$D^2 P_1$	15201	24207	2.33×10^{-2}	E2
11092.371	0.001	9013.0428	0.0011	9012.3080	$u^3 P$	$a^{-}G_{3}$	11322	22414	2.59×10^{-2}	M1 E2
11/82 070	0.002	0701.7130 8700 2242	0.0018	0703.3124 8706 9229	$a^3 \mathbf{D}$	νr_0	13201	24411	4.02×10^{-2}	E2 E2
11402.079	0.001	8625 5632	0.0011	8623 1944	$a^{1}G_{A}$	$a^1 H_{\epsilon}$	18974	24000	8.28×10^{-2}	E2 F2
110/0.770	0.001	0040.0004	0.0011	0020.1744	u 04	u 115	107/4	20207	0.20 \ 10	کند

				T (Co	able 3 ntinued)					
Wavenumber	Unc.	λvac	Unc.	λair	Tran	sition	Energy	(cm ⁻¹) ^b	Α	Туре
(cm^{-1})	(cm^{-1})	(Å)	(Å)	(Å) ^a	Lower Level	Upper Level	Lower Level	Upper Level	$(s^{-1})^{c}$	
11625.712	0.002	8601.6238	0.0017	8599.2615	$a^3 P_2$	$c^3 P_2$	13261	24886	1.18×10^{-2}	E2
11663.491	0.003	8573.7625	0.0021	8571.4076	a^3F_2	$a^3 P_2$	1597	13261	1.75×10^{-2}	M1
11706.100	0.001	8542.5549	0.0010	8540.2085	b^3F_3	a^3G_3	10708	22414	3.93×10^{-2}	M1
11811.669	0.001	8466.2042	0.0010	8463.8784	$b^{3}F_{4}$	a^3G_5	9813	21625	3.78×10^{-2}	M1
11996.091	0.004	8336.0489	0.0025	8333.7583	$a^{3}F_{2}$	$a^{3}P_{0}$	1597	13593	3.11×10^{-2}	E2
12196.485	0.001	8199.0837	0.0010	8196.8301	$b^{3}F_{4}$	a^3G_4	9813	22009	4.85×10^{-2}	MI MI EQ
12310.364	0.003	8123.2367	0.0019	8121.0037	$a^3 F_3$	$a^3 P_2$	950	13261	6.77×10^{-2}	M1, E2
12455.997	0.002	8029.5508	0.0014	8027.3430	$a^2 F_3$	$a^{2}P_{1}$ $b^{3}P_{1}$	950	13404	2.45×10^{-2}	E2 E2
12010.105	0.001	7920.3707	0.0009	7834 7108	$a^{1}D_{2}$	$b^{3}P_{0}$	11651	24207	4.20×10^{-2}	E2 E2
12945 522	0.001	7724 6789	0.0009	7722 5534	$b^3 F_2$	$b^3 P_1$	11322	24267	1.52×10^{-2}	E2
13089 619	0.001	7639.6418	0.0008	7637.5393	$b^3 F_2$	$b^3 P_0$	11322	24411	2.12×10^{-2}	E2
13133.942	0.002	7613.8604	0.0013	7611.7648	a^5F_1	$a^5 P_1$	5205	18339	1.23×10^{-2}	E2
13235.123	0.001	7555.6533	0.0008	7553.5734	a^1D_2	$c^3 P_2$	11651	24886	1.90×10^{-2}	M1, E2
13260.688	0.002	7541.0869	0.0013	7539.0110	a^3F_4	$a^3 P_2$	0	13261	2.80×10^{-2}	E2
13388.578	0.002	7469.0531	0.0012	7467.0583	a^5F_2	a^5P_1	4950	18339	1.50×10^{-2}	E2
13470.638	0.001	7423.5534	0.0008	7421.5705	$a^{5}F_{3}$	$a^{5}P_{2}$	4561	18031	$1.39 imes 10^{-2}$	E2
13495.956	0.001	7409.6270	0.0008	7407.6477	a^1D_2	b^1G_4	11651	25147	5.39×10^{-2}	E2
13559.051	0.001	7375.1474	0.0008	7373.1772	b^3F_3	$b^3 P_1$	10708	24267	2.35×10^{-2}	E2
13564.540	0.001	7372.1630	0.0008	7370.1935	b^3F_2	$c^{3}P_{2}$	11322	24886	1.81×10^{-2}	M1
13742.519	0.001	7276.6863	0.0007	7274.7418	$a^{5}F_{4}$	$a^{5}P_{3}$	4029	17772	1.05×10^{-2}	E2
13777.851	0.002	7258.0260	0.0012	7256.0863	$a^{5}F_{3}$	$a^{\circ}P_{1}$	4561	18339	1.04×10^{-2}	E2
14002.439	0.001	7141.6130	0.0007	7139.7037	$a^{5}F_{4}$	$a^{3}P_{2}$	4029	18031	2.00×10^{-2}	E2
14178.069	0.001	7053.1467	0.0007	7051.2605	$b^3 F_3$	$c^{3}P_{2}$	10/08	24886	1.03×10^{-2}	M1, E2
14180.817	0.001	7051.7799	0.0007	7049.8941	$a^{3}P_{1}$	$a^{1}P_{1}$	13404	27585	2.02×10^{-2}	M1, E2
14223.685	0.003	7030.5269	0.0014	7028.6467	$a^{3}P_{2}$ $h^{3}E$	$a^{3}D_{3}$	13261	27484	1.07×10^{-2}	M1, E2
14201.300	0.001	6981.0708	0.0007	6070 2035	$D^{*} \Gamma_4$ $a^3 P_2$	$D^{*}P_{2}$ $a^{1}P_{1}$	9815 13261	24074	2.01×10^{-2}	E2 E2
14421 013	0.002	6934 3256	0.0011	6932 4705	$a^5 F_{\tau}$	$a^5 P_2$	3350	17772	3.68×10^{-2}	E2 F2
14438 902	0.001	6925 7344	0.0007	6923 8815	$h^3 F_2$	h^1G_4	10708	25147	1.11×10^{-1}	M1
14851.184	0.003	6733.4699	0.0013	6731.6672	$a^3 P_2$	a^3D_2	13261	28112	1.53×10^{-2}	E2
15073.540	0.001	6634.1417	0.0006	6632.3649	$b^3 F_4$	$c^3 P_2$	9813	24886	1.65×10^{-2}	E2
15334.373	0.001	6521.2969	0.0006	6519.5496	b^3F_4	b^1G_4	9813	25147	1.93×10^{-1}	M1
15933.861	0.001	6275.9427	0.0006	6274.2593	a^1D_2	$a^1 P_1$	11651	27585	1.31×10^{-1}	E2
16008.089	0.003	6246.8418	0.0011	6245.1659	$a^3 P_2$	a^3D_1	13261	29269	1.16×10^{-1}	E2
16250.884	0.002	6153.5114	0.0008	6151.8598	a^1D_2	a^3H_4	11651	27902	1.14×10^{-2}	E2
16263.278	0.001	6148.8219	0.0005	6147.1715	$b^{3}F_{2}$	$a^1 P_1$	11322	27585	2.52×10^{-2}	M1
16776.042	0.002	5960.8815	0.0008	5959.2801	$b^{3}F_{3}$	$a^{3}D_{3}$	10708	27484	6.83×10^{-2}	M1
16790.012	0.002	5955.9218	0.0008	5954.3217	$b^{3}F_{2}$	$a^{3}D_{2}$	11322	28112	3.42×10^{-2}	M1
17376.530	0.002	5754.8889	0.0007	5753.3409	$a^{3}F_{2}$	$a^{1}G_{4}$	1597	18974	$3.76 \times 10^{-2*}$	E2
17403.541	0.002	5745.9570	0.0007	5744.4114	$b^5 F_3$	$a^{3}D_{2}$	10708	28112	1.34×10^{-2}	M1
17446.333	0.001	5725 0442	0.0005	5724 4020	$a^5 F_3$	a^3C_4	4301	22009	9.03×10^{-2}	M1
17404.308	0.001	5683 2583	0.0005	5681 7280	$a^{5}F$	a^3G	4930	22414	0.03×10^{-2}	M1
17617 500	0.001	5676 1742	0.0003	5674 6466	$a^{1}D_{2}$	$a^3 D_1$	11651	29269	1.95×10^{-1}	F2
17671.513	0.002	5658.8249	0.0007	5657.3019	$b^3 F_4$	$a^3 D_2$	9813	27484	1.19×10^{-1}	M1
17853.641	0.001	5601.0983	0.0004	5599.5902	a^5F_3	a^3G_3	4561	22414	8.70×10^{-2}	M1
17938.724	0.003	5574.5324	0.0009	5573.0312	$a^3 P_2$	$b^1 D_2$	13261	31199	1.63×10^{-1}	E2
17946.917	0.002	5571.9876	0.0007	5570.4870	$b^3 F_2$	$a^3 D_1$	11322	29269	4.76×10^{-2}	M1, E2
17980.356	0.001	5561.6251	0.0004	5560.1272	$a^5 F_4$	a^3G_4	4029	22009	2.20×10^{-1}	M1
18023.403	0.002	5548.3417	0.0007	5546.8473	a^3F_3	a^1G_4	950	18974	7.09×10^{-2}	M1
18274.034	0.001	5472.2454	0.0004	5470.7707	a^5F_5	a^3G_5	3350	21625	3.92×10^{-1}	M1
18385.442	0.001	5439.0859	0.0004	5437.6198	a^5F_4	a^3G_3	4029	22414	1.45×10^{-2}	M1
18658.850	0.001	5359.3870	0.0004	5357.9415	a^5F_5	a^3G_4	3350	22009	2.33×10^{-2}	M1
18973.727	0.001	5270.4457	0.0004	5269.0232	a^3F_4	a^1G_4	0	18974	1.38×10^{-1}	M1
19513.630	0.001	5124.6231	0.0004	5123.2382	$a^{\circ}F_3$	$b^{3}P_{2}$	4561	24074	1.69×10^{-2}	M1
19548.135	0.002	5115.5774	0.0006	5114.1949	$a^{1}D_{2}$	$b^{1}D_{2}$	11651	31199	7.10×10^{-1}	M1, E2
19877.552	0.002	5030.8005	0.0006	5029.4399	$b^{3}F_{2}$	$b^{1}D_{2}$	11322	31199	3.23×10^{-1}	M1, E2
20112.818	0.001	49/1.9536	0.0003	49/0.6082	$a^{5}F_{1}$	$c^{3}P_{1}$	5205	25318	2.28×10^{-2}	MI
20323.010	0.001	4919.9014	0.0003	4918.3694	$a^{5}F_{3}$	$C^2 P_2$	4501	24880	3.03×10^{-2}	MI
20307.434	0.001	4909.7937	0.0003	4908.4043	$a^2 F_2$ $a^3 F_2$	$c^{-}P_{1}$	4930	20010 20000	2.01×10^{-2}	MII E2
20491 081	0.002	4880 1719	0.0005	4878 8501	$h^3 F_2$	$h^1 D_2$	10708	31199	5.83×10^{-1}	M1
	5.002		0.0000		~ • • >	<u>-</u>	10,00	~ / /	2.35 A 10	

				(COI	itiliued)					
Wavenumber	Unc.	λ_{vac}	Unc.	λair	Trans	sition	Energy	$(\mathrm{cm}^{-1})^{\mathrm{b}}$	Α	Туре
(cm^{-1})	(cm^{-1})	(Å)	(Å)	(Å) ^a	Lower Level	Upper Level	Lower Level	Upper Level	$(s^{-1})^{c}$	
20674.204	0.002	4836.9455	0.0005	4835.6348	a^3F_3	a^3G_5	950	21625	2.56×10^{-2}	E2
20817.233	0.002	4803.7123	0.0005	4802.4101	a^3F_2	a^3G_3	1597	22414	4.41×10^{-1}	E2
21059.020	0.002	4748.5589	0.0005	4747.2710	a^3F_3	a^3G_4	950	22009	4.64×10^{-1}	E2
21464.107	0.002	4658.9407	0.0005	4657.6758	$a^{3}F_{3}$	a^3G_3	950	22414	1.26×10^{-1}	E2
21624.529	0.001	4624.3783	0.0003	4623.1222	a^3F_4	a^3G_5	0	21625	6.38×10^{-1}	E2
22009.345	0.001	4543.5247	0.0003	4542.2893	a^3F_4	a^3G_4	0	22009	1.03×10^{-1}	E2
22380.440	0.001	4468.1875	0.0003	4466.9714	a^5F_1	$a^1 P_1$	5205	27585	1.61×10^{-1}	M1
22477.223	0.002	4448.9482	0.0004	4447.7371	a^3F_2	$b^3 P_2$	1597	24074	2.96×10^{-2}	E2
22534.311	0.002	4437.6774	0.0004	4436,4691	$a^5 F_2$	$a^3 D_3$	4950	27484	2.91×10^{-2}	M1
22635.076	0.001	4417.9221	0.0003	4416.7189	$a^5 F_2$	$a^1 P_1$	4950	27585	3.48×10^{-1}	M1
22670.185	0.002	4411.0801	0.0004	4409.8786	$a^3 F_2$	$b^3 P_1$	1597	24267	3.19×10^{-1}	E2
22814.282	0.002	4383.2193	0.0004	4382.0250	$a^3 F_2$	$b^3 P_0$	1597	24411	4.14×10^{-1}	E2
22907.174	0.002	4365.4447	0.0004	4364.2549	a^5F_1	$a^3 D_2$	5205	28112	7.17×10^{-2}	M1
22923.584	0.002	4362.3197	0.0004	4361.1307	$a^5 F_3$	$a^3 D_3$	4561	27484	1.31×10^{-2}	M1
23124.096	0.002	4324.4934	0.0004	4323.3141	a^3F_3	$b^3 P_2$	950	24074	3.58×10^{-1}	E2
23161.810	0.002	4317 4519	0.0004	4316.2744	$a^5 F_2$	$a^3 D_2$	4950	28112	6.63×10^{-2}	M1
23317.058	0.002	4288.7058	0.0004	4287.5356	$a^3 F_3$	$b^3 P_1$	950	24267	4.65×10^{-1}	E2
23455.385	0.002	4263 4133	0.0004	4262,2496	$a^5 F_4$	$a^3 D_2$	4029	27484	5.91×10^{-1}	M1
23550.036	0.002	4246.2781	0.0004	4245,1187	$a^3 F_2$	b^1G_4	1597	25147	9.41×10^{-2}	E2
23551.083	0.002	4246 0893	0.0004	4244,9299	$a^5 F_2$	$a^3 D_2$	4561	28112	7.62×10^{-1}	M1
23720.320	0.002	4215,7948	0.0004	4214 6432	$a^3 F_2$	$c^{3}P_{1}$	1597	25318	3.75×10^{-1}	E2
24064 079	0.002	4155 5715	0.0004	4154 4352	$a^5 F_1$	$a^3 D_1$	5205	29269	1.74×10^{-1}	M1
24074 420	0.001	4153,7865	0.0002	4152.6507	$a^3 F_4$	$h^3 P_2$	0	24074	2.41	E2
24264 125	0.003	4121.3108	0.0005	4120 1832	$a^3 F_2$	$c^3 P_0$	1597	25861	2.46	E2
24318 715	0.002	4112 0594	0.0004	4110 9342	$a^5 F_2$	$a^3 D_1$	4950	29269	3.71×10^{-1}	M1
24367 193	0.002	4103 8786	0.0004	4102.7554	$a^3 F_2$	$c^{3}P_{1}$	950	25318	1.65	E2
24886 400	0.001	4018 2590	0.0002	4017 1576	$a^3 F_4$	$c^{3}P_{2}$	0	24886	3.88×10^{-2}	E2
25147 233	0.001	3976 5807	0.0002	3975 4898	$a^3 F_4$	b^1G_4	0	25147	1.29×10^{-2}	M1 F2
25887 176	0.003	3862 9166	0.0002	3861 8544	$a^3 F_2$	$a^3 D_2$	1597	27484	3.74×10^{-2}	E2
25987 941	0.002	3847 9386	0.0003	3846 8802	$a^3 F_2$	$a^{1}P_{1}$	1597	27585	4.94×10^{-1}	E2
26304 964	0.003	3801 5639	0.0004	3800 5172	$a^3 F_2$	a^3H_4	1597	27902	1 50	E2
26514 675	0.003	3771 4964	0.0004	3770 4573	$a^3 F_2$	$a^3 D_2$	1597	28112	5.27×10^{-1}	E2
26518 664	0.002	3770 9291	0.0003	3769,8901	$a^3 F_2$	a^3H_5	950	27469	1.73	E2
26534 049	0.003	3768 7426	0.0004	3767 7042	$a^3 F_2$	$a^3 D_2$	950	27484	3.84×10^{-1}	E2
26634 814	0.002	3754 4847	0.0003	3753 4498	$a^3 F_2$	$a^{1}P_{1}$	950	27585	2.71×10^{-1}	E2
26951 837	0.002	3710 3222	0.0003	3709 2985	$a^3 F_2$	a^3H_4	950	27902	1.40×10^{-1}	E2
27105 744	0.002	3689 2550	0.0003	3688 2365	$a^3 F_4$	$a^{3}H_{c}$	0	27106	2.06	E2
27161 548	0.002	3681 6753	0.0003	3680 6588	$a^3 F_2$	$a^3 D_2$	950	28112	1.06	E2
27468 988	0.001	3640 4690	0.0002	3639 4628	$a^3 F_4$	$a^{3}H_{5}$	0	27469	1.05×10^{-1}	E2
27484 373	0.002	3638 4312	0.0002	3637 4255	$a^3 F_4$	$a^3 D_2$	0	27484	1 35	E2
27671 580	0.002	3613 8161	0.0004	3612 8165	$a^3 F_2$	$a^3 D_1$	1597	29269	8.69×10^{-1}	E2
28111.872	0.002	3557 2160	0.0003	3556 2306	$a^3 F_4$	$a^3 D_2$	0	28112	9.09×10^{-2}	E2
28318 453	0.002	3531 2663	0.0004	3530 2874	$a^3 F_2$	$a^3 D_1$	950	29269	4.61×10^{-2}	E2
	0.000	5551.2005	0.0004	3330.2074	2_	1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2/20/	1.01 × 10	
29616 849	0.002	3376 4564	0.0003	3375 5160	$a^{3}F_{2}$	$a^{1}H_{\epsilon}$	950	30567	4.39×10^{-2}	E2

Table 3

Notes.

^a Calculated using Birch & Downs (1994) for $\lambda_{vac} > 7500$ Å, and Bönsch & Potulski (1998) for all other cases.

^b Truncated energy. For the exact value, scale the energies given in Pickering et al. (1998) by 7 parts in 10⁸.

^c Calculated transition probabilities taken from Raassen et al. (1998). The line at 17376.531 cm⁻¹ (*) is not given by Raassen et al. (1998), so the value shown is from Quinet (1998).

(This table is also available in a machine-readable form in the online journal.)

experimental levels reported by Sugar & Corliss (1985). Quinet (1998) also noted that strong multiplets are typically composed of only one type of transition; M1 transitions being dominant for inter-combination multiplets ($\Delta S \neq 0$) and E2 transitions dominating under LS-coupled selection rules ($\Delta S = 0$).

A comparison of the transition probabilities obtained by Raassen et al. (1998), A_R , with those obtained by Quinet (1998),

 A_Q , is shown in Figure 3. Here, it can be seen that for the majority of lines, A_R and A_Q differ by no more than about 25%, although at values of A_R less than 0.1 s⁻¹, there is a significant minority of lines where differences increase to around a factor of two. At higher values of A_R , the two sets of results converge, but rather than approaching zero difference, there is a systematic difference; A_Q being approximately 25% larger than A_R at values of A_R greater than 0.1 s⁻¹.

 Table 4

 Parity-forbidden Lines in V II with a Transition Probability Less Than 1×10^{-2} s⁻¹ or Upper Level Excitation Greater Than 5 eV

Wavenumber	Unc.	λ_{vac}	Unc.	λ_{air}	Trans	sition	Energy	$(\mathrm{cm}^{-1})^{\mathrm{b}}$	Α	Туре
(cm^{-1})	(cm^{-1})	(Å)	(Å)	$(\text{\AA})^{a}$	Lower Level	Upper Level	Lower Level	Upper Level	$(s^{-1})^{c}$	
4.892	0.004	20441537.2036	17728.1475	20435965.8233	$b^3 P_0$	$b^{3}P_{1}$	19161	19166	1.79×10^{-9}	M1
5.910	0.004	16920473.7733	12146.7835	16915862.0656	b^3D_2	b^3D_3	20617	20623	2.29×10^{-9}	M1, E2
12.139	0.004	8237910.8658	2879.1907	8235665.6073	c^3F_3	c^3F_4	30306	30319	3.62×10^{-8}	M1, E2
14.216	0.004	7034327.5183	2040.1854	7032410.2988	$a^5 P_2$	$b^3 F_4$	13595	13609	1.17×10^{-18}	E2
19.862	0.003	5034739.7040	801.5932	5033367.4759	b^1G_4	$b^3 P_2$	19113	19133	3.80×10^{-19}	E2
20.916	0.003	4781028.8774	646.5286	4779725.7988	$b^3 F_2$	$a^5 P_1$	13491	13512	2.43×10^{-18}	E2
24.357	0.004	4105595.9272	607.7488	4104476.9391	a^3D_1	a^3D_2	18270	18294	3.14×10^{-7}	M1, E2
27.857	0.004	3589761.9988	546.7233	3588783.6022	d^3F_4	$d^3 F_3$	30614	30642	5.57×10^{-7}	M1, E2
28.631	0.004	3492717.6836	517.5630	3491765.7367	$b^3 P_2$	$b^3 P_0$	19133	19161	$5.03 imes 10^{-16}$	E2
30.846	0.002	3241911.4310	235.0105	3241027.8417	$a^5 P_1$	$b^3 F_3$	13512	13543	1.79×10^{-17}	E2

Notes.

** 7

^a Calculated using Birch & Downs (1994) for $\lambda_{vac} > 7500$ Å, and Bönsch & Potulski (1998) for all other cases.

^b Truncated energy. For the exact value, see Thorne et al. (2013).

^c Calculated transition probabilities derived from the log(gA) values given by Kurucz (2006b).

(This table is available in its entirety in a machine-readable form in the online journal. A portion is shown here for guidance regarding its form and content.)

	Parity-forbidd	en Lines in Co II y	with a Transition H	Probability Less T	Than 1×10^{-2}	s ⁻¹ or Uppe	er Level Exci	tation Greater	Than 5 eV
ber	Unc.	λ_{vac}	Unc.	λ_{air}	Trans	sition	Energy	$(cm^{-1})^{b}$	Α
	(cm^{-1})	(Å)	(Å)	(Å) ^a	Lower	Upper	Lower	Upper	$(s^{-1})^{c}$

Table 5

wavenumber	Unc.	λ_{vac}	Unc.	λ_{air}	Iran	sition	Energy	(cm ·)*	A	Type
(cm^{-1})	(cm^{-1})	(Å)	(Å)	(Å) ^a	Lower Level	Upper Level	Lower Level	Upper Level	$(s^{-1})^{c}$	
15.385	0.002	6499837.0491	944.6914	6498065.5060	a^3H_5	a^3D_3	27469	27484	2.03×10^{-20}	E2
76.085	0.031	1314319.4191	536.3402	1313961.1987	a^5D_4	$c^{3}F_{2}$	40695	40771		
100.765	0.002	992408.0087	22.0224	992137.5259	a^3D_3	$a^1 P_1$	27484	27585	4.86×10^{-17}	E2
108.330	0.042	923105.2617	361.5253	922853.6674	$c^3 F_2$	c^3F_3	40771	40879	3.28×10^{-5}	M1, E2
143.633	0.002	696218.7868	10.8387	696029.0308	$a^3 P_2$	$a^3 P_1$	13261	13404	5.18×10^{-5}	M1, E2
144.097	0.001	693976.9253	6.8109	693787.7803	$b^3 P_1$	$b^3 P_0$	24267	24411	1.44×10^{-4}	M1
167.620	0.042	596587.4776	151.0026	596424.8763	$c^3 F_3$	c^3F_4	40879	41047	9.50×10^{-5}	M1, E2
184.415	0.031	542255.2016	91.2948	542107.4086	a^5D_4	c^3F_3	40695	40879	4.78×10^{-9}	M1, E2
188.967	0.003	529192.8908	8.8558	529048.6580	$a^{3}P_{1}$	$a^3 P_0$	13404	13593	$3.64 imes 10^{-4}$	M1
192.962	0.001	518236.7150	3.7981	518095.4683	$b^{3}P_{2}$	$b^{3}P_{1}$	24074	24267	8.14×10^{-5}	M1, E2

Notes.

^a Calculated using Birch & Downs (1994) for $\lambda_{vac} > 7500$ Å, and Bönsch & Potulski (1998) for all other cases.

^b Truncated energy. For the exact value, scale the energies given in Pickering et al. (1998) by 7 parts in 10⁸.

^c Calculated transition probabilities of 1×10^{-3} or greater were taken from Raassen et al. (1998) unless marked with a * or †. Values less than 1×10^{-3} were derived from the log(*gA*) values given by Kurucz (2006b).

* Transition probability greater than 1×10^{-3} taken from Quinet (1998).

[†] Transition probability greater than 1×10^{-3} derived from the log(gA) values given by Kurucz (2006b).

(This table is available in its entirety in a machine-readable form in the online journal. A portion is shown here for guidance regarding its form and content.)

In this paper, we choose to adopt the values given by Raassen et al. (1998), where possible, as these authors employed the more accurate and new energy levels of Pickering et al. (1998) in their calculations. We therefore only include values from Quinet (1998) in Tables 3 and 5 where no corresponding value is available in Raassen et al. (1998). If neither author reports a transition probability for a given line, as is the case for $A < 1 \times 10^{-3}$ s⁻¹, the transition probability shown in Tables 3 and 5 is derived from the log(gA) values in Kurucz (2006b).

3.3. Air Wavelengths

In addition to the vacuum Ritz wavelengths for [V II] and [Co II] lines, Tables 2–5 also list the calculated air wavelength of each line, λ_{air} . Aldenius & Johansson (2007) give a detailed review of approaches to calculating λ_{air} in different spectral

regions. Following their approach, the refractive index correction given by Birch & Downs (1994) was used for lines in the infrared ($\lambda_{vac} > 7500$ Å). For all lines of shorter wavelength, the correction given by Bönsch & Potulski (1998) was used.

4. SUMMARY

We have presented a comprehensive list of accurate Ritz wavelengths for parity-forbidden [Co II] and [V II] lines, calculated by considering radiative M1 and E2 transitions between all known metastable levels in each species. These data will aid the analysis of spectra from low-density astrophysical plasmas, particularly in the infrared where strong forbidden lines are seen in both the near-IR, from transitions between LS terms, and far-IR, from transitions between fine-structure levels.

Figure 2. Energy level diagram showing the 47 known metastable levels in Co II, which are of even parity. The levels belonging to the $3d^7(^4F)4pz^5F$ term, which is the lowest-lying term of odd parity, are also shown as dashed lines to indicate the upper limit on the region in which E1 transitions are forbidden.

Figure 3. Comparison of calculated transition probabilities obtained by Raassen et al. (1998), A_R , with those obtained by Quinet (1998), A_Q . The dashed horizontal lines indicate differences of plus and minus 25%.

We thank M. J. Barlow, P. J. Storey, and R. L. Kurucz for helpful discussions, and the UK Science and Technology Facilities Council (STFC) for funding this research.

REFERENCES

Aldenius, M., & Johansson, S. 2007, A&A, 467, 753 Arkhipova, V. P., Klochkova, V. G., & Sokol, G. V. 2001, AstL, 27, 99

- Barlow, M. J. 2012, in AIP Conf. Proc. 1438, 17th Int. Conf. Atomic Processes in Plasmas, ed. K. Aggarwal & F. Shearer (Melville, NY: AIP), 103
- Birch, K. P., & Downs, M. J. 1994, Metro, 31, 315
- Bönsch, G., & Potulski, E. 1998, Metro, 35, 133
- Brault, J. W. 1976, JOSA, 66, 1081
- Cowan, R. D., & Griffin, D. C. 1976, JOSA, 66, 1010
- Fang, X., & Liu, X.-W. 2011, MNRAS, 415, 181
- Hameed, S. J. 1972, JPhB, 5, 746
- Hansen, J. E., Uylings, P. H. M., & Raassen, A. J. J. 1998, PhyS, 37, 664
- Hartman, H., Gull, T., Johansson, S., & Smith, N. 2004, A&A, 419, 215
- Kurucz, R. L. 2006a, http://kurucz.harvard.edu/atoms/2301/
- Kurucz, R. L. 2006b, http://kurucz.harvard.edu/atoms/2701/
- Laughlin, C. 1992, PhyS, 45, 238
- Learner, R. C. M., & Thorne, A. P. 1988, JOSAB, 5, 2045
- Meijerink, R., Spaans, M., & Israel, F. P. 2007, A&A, 461, 793
- Norlén, G. 1973, PhyS, 8, 249
- Osterbrock, G. E., & Ferland, G. J. 2006, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (2nd ed.; Sausalito, CA: Univ. Science Books)
- Parpia, F. A., Froese Fischer, C., & Grant, I. P. 1996, CoPhC, 94, 249
- Pickering, J. C., Raassen, A. J. J., Uylings, P. H. M., & Johansson, S. 1998, ApJS, 117, 261
- Quinet, P. 1998, ApJS, 129, 147
- Raassen, A. J. J., Pickering, J. C., & Uylings, P. H. M. 1998, A&AS, 130, 541
- Radziemski, L. J., & Kaufman, V. 1969, JOSA, 59, 424
- Smith, N., Balick, B., & Gehrz, R. D. 2005, AJ, 130, 853
- Sugar, J., & Corliss, C. 1985, JPCRD, 14, 522
- Thorne, A. P., Harris, C. J., Wynne-Jones, I., Learner, R. C. M., & Cox, G. 1987, JPhE, 20, 54
- Thorne, A. P., Pickering, J. C., & Semeniuk, J. I. 2013, ApJS, 207, 13
- Whaling, W., Anderson, W. H. C., Carle, M. T., Brault, J. W., & Zarem, H. A. 1995, JQSRT, 53, 1