

Home Search Collections Journals About Contact us My IOPscience

Investigation of the hyperfine structure of Ta I lines (X)

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 Phys. Scr. 74 211

(http://iopscience.iop.org/1402-4896/74/2/011)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.31.241.52 The article was downloaded on 15/01/2011 at 18:40

Please note that terms and conditions apply.

Phys. Scr. 74 (2006) 211-217

Investigation of the hyperfine structure of Ta I lines (X)

N Jaritz¹, L Windholz¹, U Zaheer¹, M Farooq¹, B Arcimowicz², R Engleman Jr³, J C Pickering⁴, H Jäger¹ and G H Guthöhrlein⁵

¹ Institut für Experimentalphysik, Technische Universität Graz, Petersgasse 16, A-8010 Graz, Austria

² Institute of Physics, Poznań Technical University, Pl-60–965 Poznań, Poland

³ Department of Chemistry, University of New Mexico, Albuquerque, NM 87131, USA

⁴ Blackett Laboratory, Imperial College London, Prince Consort Road, London, UK

⁵ Laboratorium für Experimentalphysik, Universität der Bundeswehr Hamburg, Holstenhofweg 85,

D-22043 Hamburg, Germany

E-mail: windholz@tugraz.at

Received 27 October 2005 Accepted for publication 10 April 2006 Published 18 July 2006 Online at stacks.iop.org/PhysScr/74/211

Abstract

We report the discovery of 23 new energy levels of even parity and 21 new energy levels of odd parity of the tantalum atom. The results given here are based on investigations of the hyperfine structure of 221 new spectral lines of the tantalum atom (Ta I) by means of laser spectroscopic methods, detecting laser-induced fluorescence. The excitation wavelengths were extracted from high-resolution Fourier transform spectra.

PACS number: 31.10.Fn

1. Introduction

The electronic shell of the tantalum isotope ¹⁸¹Ta has been investigated by our group since 1990 [1–9]. In the first few papers [1–5], the main point was the determination of the hyperfine (hf) constants of already known levels, while later [5–9] the finding of up to the time of publication unknown energy levels was the main purpose of the investigations. At the beginning of the investigations, only photographic spectra produced by B Arcimowicz using a grating spectrograph with a 2 m focal length in fifth order were available. In recent years, additional spectra, acquired by J C Pickering and R Engleman using the technique of Fourier transform (FT) spectroscopy, were analysed.

A huge number of additional lines, not listed in commonly used spectral tables, were found in these spectra [10–12]. As the nuclear momentum of tantalum is I = 7/2, all lines show hf structures due to characteristic properties of the levels involved. In most cases these lines could be classified as transitions between known Ta levels, from their wavenumber and their observed hf pattern resolved in the FT spectra. Other lines, however, required investigations using laser excitation methods, particularly when the centre of gravity wavenumbers of the lines did not match energy differences between known levels, and/or when the observed hyperfine patterns did not match patterns

predicted assuming transitions between known energy levels. In these cases the method of laser-induced-fluorescence (LIF) spectroscopy was used. From the recorded hf pattern, the angular momenta J, the magnetic dipole constants A and the electric quadrupole constants B of the levels involved were determined. These characteristic properties, together with the centre of gravity wavenumbers of the excited and of the fluorescence lines, led to the determination of the energy of the new level. In most cases the newly introduced level could be confirmed by at least one further excitation.

Additionally, some previously unknown levels were found by analysing the FT spectra (for methods, see [13]). The existence of these levels was often confirmed later by laser excitation.

2. Experimental details

The experimental setup was the same as used previously for the work on Ta I. A sketch of the arrangement is given in [5]. By cathode sputtering, free tantalum atoms were produced in a hollow cathode lamp with an inner diameter of 3 mm and a cathode length of 15–20 mm. The cathode current was typically 60 mA. Argon was used as the discharge gas, with a pressure between 1 and 1.5 mbar. The emission spectrum of the Ta–Ar plasma contains mainly Ta I lines, but also lines of Ta II.

N	Jaritz	et	al
N	Jaritz	et	al

Tab	ole 1. Ta I	lines inv	vestigate	d by laser excit	ation.			Table	1. Conti	nued.	
		J-va	lues	Level energy	ies (cm $^{-1}$)			J-va	lues	Level energ	ies (cm ⁻¹)
$\lambda/Å$	SNR	Even	Odd	Even	Odd	λ/Å	SNR	Even	Odd	Even	Odd
4236.060	nl < 1	7/2	5/2	29276.388	52876.59 ^a	6115.370	nl 5	5/2	5/2	43142.50	26794.812
4241.872	nl < 1	13/2	11/2	30542.35	54110.21 ^a	6122.864	nl 10	5/2	5/2	44461.647	28133.941
4245.087	nl2	9/2	9/2	55080.053ª	31530.050	6125.391	nl 4	1/2	3/2	48535.93	32214.941
4245.850	nl5	5/2	5/2	41539.61	17993.726	6125.958	nl 8	3/2	1/2	32187.394	48 506.91ª
4246.599	nl < 1	3/2	5/2	52885.13 ^a	29343.501	6129.092	nl 6	3/2	3/2	15903.818	32214.941
4256.509	nl < 1	11/2	9/2	52253.46 ^a	28766.644	6131.380	nl < 1	3/2	5/2	33676.410	49981.439
4309.504	nl < 1	3/2	3/2	54751.88 ^a	31553.879	6131.900	nl 3	9/2	7/2	51103.31	34799.731
4325.930	n110	5/2	3/2	53774.61 ^a	30664.684	6137.095	nl 5	3/2	3/2	32187.394	48477.26 ^a
4326.020	nl < 1	5/2	5/2	48290.642	25181.186	6141.713	nl < 1	5/2	7/2	35065.694	51343.29 ^a
4327.192	nl < 1	7/2	5/2	25894.22	48997.39 ^a	6143.923	nl < 1	7/2	5/2	52285.81	36014.068
4334.720	nl < 1	9/2	9/2	54 593.11ª	31530.050	6143.990	nl 8	1/2	1/2	22236.014	38507.611
4346.466	nl < 1	$\frac{7}{2}$	9/2	22761.279	45762.010	6150.283	nl 4	$\frac{1}{2}$	5/2	34536.885	50791.77 ^a
4356.529	nl < 1	9/2	$\frac{7}{2}$	55080.053 ^a	32132.453	6152.470 ^b	nl 8	3/2	5/2	21381.052	37630.196
4369.423	nl < 1	5/2	3/2	53774.61ª	30894.719	6157 316	nl 5	5/2	5/2	34514897	50751 28 ^a
4382.645	nl < 1	5/2	5/2	23512.447	46323.311	6157 999	nl 10	3/2	5/2	24275 959	40510 392
4388.558	nl < 1	$\frac{11}{2}$	$\frac{11}{2}$	33064.153	55844.28ª	6159 754	nl < 1	3/2	3/2	4712464	30894 719
4393 990	nl2	7/2	7/2	50 532 56	27780.652	6160.009	nl 15	5/2	3/2	44918 665	28689 339
4399.403	nl2	3/2	1/2	49 590.12 ^a	26866.045	6162.090	nl < 1	5/2	5/2	25655493	41879 253
4402 630	nl7	7/2	7/2	24917 996	47625.030	6163.070	nl 3	7/2	9/2	9705 350	25926 383
4414 249	nl3	$\frac{1}{2}$	1/2	49513 59 ^a	26866.045	6163 210	n l < 1	7/2	7/2	35 122 47	51 343 29 ^a
4415 540	nl < 1	7/2	5/2	49435 71	26794 812	6165 628	m < 1 n = 10	7/2	5/2	34 536 885	50751 28 ^a
4451 110	nl3	1/2	$\frac{3}{2}$	20144.81	42604.76^{a}	6167.028	nl 10	5/2	5/2	31710773	17028.08
4455 308	nl2	9/2	$\frac{1}{2}$	32 192 70	5463154^{a}	6170 370	nl 5	3/2	5/2	52054 01	35876 551
4544 163	nl4	5/2	$\frac{11}{2}$	46981 974	24 98 1 880	6180.065	n l < 1	7/2	7/2	26575 220	42751 800
5596 932	nl2	5/2	3/2	24 546 202	42408 185	6181 /31	m < 1	0/2	0/2	54115.03	370/2023
5600 105	n15	7/2	9/2	53 3/0 80	35/07 660	6184 480	m < 1 n 1 4	5/2	5/2	27715.93	/3 880 820
5613 680	nl/	0/2	$\frac{y/2}{11/2}$	25 376 469	43 185 120	6185 545	nl 4	$\frac{3}{2}$	$\frac{3}{2}$	55630.80	30/68 660
5675 823	nl4	7/2	5/2	46958 11	29343 501	6101 038	m + n - 1	5/2	$\frac{11}{2}$	34 514 807	50660 46ª
5683 858	nl5	7/2	9/2	51 204 28	33615 515	6104 438	$n \leq 1$	0/2	0/2	15 301 010	31 530 050
5747 650	nl 3	5/2	5/2	27715.82	45109373	6194.710	nl 3	3/2	5/2	2741244	43 550 795
5752 535	nl3	$\frac{3}{2}$	3/2	20144.81	37 523 584	6200 391	nl 8	7/2	7/2	34 536 885	5066046
5755 022	nl 2	5/2	3/2	21623.018	38 994 377	6204.090	nl 2	7/2	0/2	17383 173	33/07 15/
5778 559	nl 3	7/2	5/2	53 314 62 ^a	36014.068	6216 334	nl 4	3/2	$\frac{1}{2}$	41 594 852	25 512 659
5779 195	n < 1	$\frac{1}{2}$	3/2	49 51 3 59 ^a	32 214 941	6227 396	$n \sim 1$	7/2	5/2	30879 724	46933 359
5799 810	n < 1	9/2	$\frac{3}{2}$	53,050,68ª	35813 517	6264 941	m < 1 nl 6	5/2	7/2	51703 645	35746 232
5827 477	n < 1	7/2	7/2	53 314 62 ^a	36159 292	6285 491	$n \sim 1$	5/2	7/2	31719773	47625.030
5838 923	nl 3	3/2	5/2	54751 88 ^a	37630 196	6286 145	n < 1	9/2	7/2	33978 88	49882486
5840 850	n < 1	7/2	7/2	54677 34 ^a	37 561 288	6303 113	n18	$\frac{1}{2}$	$\frac{1}{2}$	26743 950	42 604 76 ^a
5841 084	nl 5	3/2	5/2	33676 410	50791 77 ^a	6313 388	$n \sim 1$	5/2	5/2	20715.930	43 550 795
5855 100	nl 2	13/2	13/2	56435.09 ^a	39360710	6316.025	n < 1	7/2	7/2	34 536 885	50365.26
5889 165	nl 4	7/2	5/2	26 575 220	43 550 795	6319.070	$nl \leq 1$	3/2	$\frac{1}{2}$	49381 988	33 561 282
5889 908	nl 8	5/2	3/2	27715.82	44 689 309	6330 113	nl 8	5/2	3/2	24 546 202	40339329
5891 893	nl < 1	7/2	9/2	53 598 985ª	36631 213	6336 728	nl < 1	3/2	$\frac{3}{2}$	34969.95	50746 60 ^a
5899 911	nl 2	9/2	9/2	29116 264	46060 53	6353 820	nl 6	$\frac{3}{2}$	3/2	51455 10 ^a	35720.898
5914 160	nl < 1	5/2	$\frac{7}{2}$	51703 645	34799731	6364 966°	nl 10	7/2	9/2	51 204 28	35497 669
5922 507	nl 20	7/2	$\frac{7}{2}$	22761 279	39641 344	6365 688	nl 5	3/2	5/2	25876.05	41 580 975
5928 887	nl < 1	5/2	$\frac{7}{2}$	31719773	48 581 67 ^a	6366 308	nl 1	9/2	$\frac{3}{2}$	33978.88	49682 230
5936 393	nl Q	7/2	5/2	29276 388	46116.938	6368.066	nl 8	$\frac{13}{2}$	13/2	55059 72 ^a	39360710
5937 740	nl 8	9/2	$\frac{3}{2}$	49907.096	33070 364	6371 359	nl 13	9/2	9/2	29116 264	44 806 789
5951.060	nl 5	7/2	7/2	53 598 985ª	36799 905	6372 540	nl 6	7/2	5/2	48 872 99	33185.006
5963 803	nl 3	5/2	3/2	35065 694	51 828 83 ^a	6387 420	nl 2	9/2	$\frac{3}{2}$	53845 74	38 194 285
5965 530	nl 7	$\frac{3}{2}$	3/2	22236014	38994 377	6388 930	nl 2	9/2	$\frac{11}{2}$	51 394 01	35746 232
5965 837	nl 3	5/2	3/2	31719773	48477 26 ^a	6396 283	$n \ge 1$	3/2	$\frac{1}{2}$	34969.95	50 599 71ª
5970 130	nl 2	7/2	$\frac{3}{2}$	30879 724	47625.030	6399 874	$nl \otimes 1$	5/2	5/2	32916 837	48 537 973
5992 991	nl 4	9/2	$\frac{7}{2}$	33978.88	5066046 ^a	6411 587	nl 6	7/2	5/2	24917 996	40510 392
6005 861	nl 4	9/2	9/2	29116 264	45762.010	6412 160	nl < 1	$\frac{13}{2}$	$\frac{3}{2}$	55059 72 ^a	39468 660
6023 346	nl 15	9/2	$\frac{11/2}{11/2}$	23912 929	40510 392	6413 764	n < 1	5/2	7/2	5038689	34799731
6081.060	n < 1	$\frac{2}{11/2}$	11/2	52.253.46 ^a	35813 517	6414 478	nl > 1	5/2	7/2	51 331 776	35746 222
6098 260	nl 4	$\frac{11}{2}$	9/2	53024 61	36631 213	6417 320	nl6	3/2	5/2	51455 10 ^a	35876 551
6099 977	nl 3	9/2	7/2	32 192 70	48 581 67 ^a	6424 861	nl 4	5/2	3/2	32916 837	48477 26ª
6101 198	nl 6	5/2	5/2	50 386 89	34001 203	6431 721	nl	5/2	3/2	49622 187	34078 456
6106 328	n < 1	7/2	7/2	29276 388	45648 307	6440 266	nl > 1	9/2	7/2	50322.107	34700 721
6106.344	nl < 1	3/2	3/2	55959.631	39587 753	6442 354	nl < 1	5/2	3/2	50760 94 ^a	35742 955
6114 299	n < 1	3/2	5/2	32187 394	48 537 973	6444 979	n > 1	3/2	3/2	49 590 12ª	34078 456
~~~ !!=>)	、 1	-/-	- / -	2=101.371		0111.717	~ 1	5/2	5/2	17070.14	51070.750

Investigation	of the h	yperfine	structure	of Ta	I lines	(X)
---------------	----------	----------	-----------	-------	---------	-----

Table 1. Continued.				Table 1. Continued.							
		J-va	alues	Level energ	ies (cm ⁻¹ )			J-va	alues	Level energ	ies (cm ⁻¹ )
$\lambda/{ m \AA}$	SNR	Even	Odd	Even	Odd	$\lambda/{ m \AA}$	SNR	Even	Odd	Even	Odd
6450.354	nl < 1	3/2	3/2	54751.88 ^a	39253.139	6684.400	nl 2	9/2	7/2	25376.469	40333.027
6457.361	nl 10	5/2	3/2	23512.447	38994.377	6691.494	nl 5	5/2	3/2	26752.40	41692.621
6464.796	nl 5	5/2	7'/2	51210.36 ^a	35746.232	6697.152	nl < 1	1/2	3/2	29761.71	44689.309
6467.056	nl 8	3/2	3/2	47012.63	31553.879	6713.000	nl 2	7'/2	9/2	35122.47	50014.147
6469.696	nl 5	5/2	5/2	32916.837	48369.457	6713.715	nl 4	7/2	5/2	54677.34 ^a	39786.599
6476.937	nl 2	1/2	3/2	49513.59 ^a	34078.456	6714.426	nl 5	7/2	7/2	29276.388	44 165.583
6478.112	nl < 1	9/2	7/2	32192.70	47625.030	6716.813	nl < 1	9/2	7/2	51683.81	36799.905
6479.892 ^d	nl < 1	5/2	3/2	46981.974	31553.879	6717.542	nl < 1	7/2	9/2	30879.724	45762.010
6496.887	nl 2	9/2	$\frac{7}{2}$	55323.98ª	39936.246	6739.172	nl 4	5/2	3/2	36689.667	21855.124
6498.630	nl 4	5/2	3/2	34514.897	49898.50 ^a	6739.950	nl 4	5/2	3/2	35065.694	49898.50 ^a
6499.731	nl 3	5/2	$\frac{7}{2}$	46981.974	31600.982	6744.658	nl < 1	5/2	7/2	49622.187	34799.731
6507.867	nl 3	5/2	$\frac{7}{2}$	43142.50	27780.652	6760.525	nl 6	1/2	3/2	41151.381	26363.721
6509.832	nl 3	$\frac{2}{7/2}$	$\frac{7}{2}$	46958 11	31600 982	6763.641	nl 4	5/2	$\frac{7}{2}$	53459.935	38679.181
6513 385	nl 5	5/2	3/2	32,916,837	48265.6ª	6764.524	nl 4	3/2	5/2	46740.349	31961.442
6524 920	nl 2	3/2	3/2	25876.05	41 197 664	6769.260	nl < 1	7/2	$\frac{2}{7/2}$	30879.724	45648.307
6526 304	nl < 1	9/2	$\frac{3}{2}$	53 512 66 ^a	38 194 285	6771.618	nl < 1	9/2	$\frac{7}{2}$	50 509.674	35746.232
6530 675	nl 4	$\frac{11}{2}$	9/2	29498 604	44 806 789	6790.253	nl 3	1/2	3/2	6049.433	20772.357
6532.410	nl 8	7/2	5/2	26575 220	41879 253	6791 150	nl 6	5/2	7/2	42 501 635	27780.652
6532,600	nl 5	3/2	3/2	49381988	34078 456	6792.323	nl 5	3/2	3/2	24275.959	38994.377
6534 327	n < 1	5/2	7/2	35065 694	50365.26	6793 573	nl 8	7/2	9/2	46245 79	31 530 050
6535 650	nl 3	$\frac{3}{2}$	11/2	30542 35	45838 890	6798.016	nl 1	5/2	5/2	53459 935	38753 816
6537 675	n < 1	9/2	9/2	50509674	35217 944	6808 320	nl 10	5/2	3/2	25655363	40339329
6539 466	n110	$\frac{1}{2}$	3/2	22,236,014	37 523 584	6809.770	nl 10	3/2	3/2	22.842.851	37 523 584
6539,990	nl 4	9/2	7/2	29116 264	44402 618	6830 830	nl 4	7/2	7/2	53 314 62 ^a	38679 181
6544 577	nl 8	9/2	11/2	45636 874	30361 262	6831 357	nl 4	3/2	5/2	25876.05	40510 392
6557 167	nl < 1	7/2	7/2	50992 506	35746 232	6836 647	nl 3	5/2	7/2	53 302 234	38679 181
6560 712	m < 1	$\frac{11/2}{11/2}$	13/2	54 598 745	39360710	6838 162	n < 1	3/2	5/2	48620.98	34001 203
6565 992	nl 4	$\frac{11}{2}$	$\frac{13}{2}$	22236.014	37461 485	6838 797	nl6	3/2	$\frac{3}{2}$	22842 851	37461 485
6570 861	nl 4	$\frac{1}{2}$	5/2	3963 922	19178 426	6852 788	nl 1	$\frac{3}{2}$	3/2	2976171	44 350 284
6571 257	n - 1	5/2	5/2	31719773	46933 359	6857 630	nl6	7/2	5/2	17 383 173	31961 442
6574 385	n > 1	5/2	7/2	53/50 035	38 253 433	6858 458	nl 4	9/2	7/2	50322 75 ^a	35746 232
6575 875	nl 8	5/2	5/2	21623.018	36825.455	6874 488	$n \neq 1$	3/2	3/2	48620.98	34078456
6580 455	nl 10	3/2	1/2	27 412 44	12604 76 ^a	6887.400	m < 1 nl 4	13/2	$\frac{3/2}{11/2}$	30542 35	45057404
6585 446	nl < 1	7/2	0/2	30870 724	46060 53	6010 377	nl 6	5/2	3/2	24 546 202	38 994 377
6508 112	nl < 1	7/2	7/2	1024636	34 004 602	6919.377	nl 4	$\frac{3/2}{13/2}$	$\frac{3/2}{11/2}$	54957 71	40510392
6603 562	m < 1	5/2	3/2	36680 667	51 828 83 ^a	6022.256	nl 5	1/2	$\frac{11}{2}$	/0513 50 ^a	35071 362
6609.217	n < 1	7/2	3/2	20276 388	<i>11</i> 020.05	6945 624	nl 5	0/2	0/2	55 080 053 ^a	40686463
6610 700	n1.0	5/2	7/2	29270.300	47625.030	6964 800	nl 3	3/2	3/2	25 876 05	40230.036
6615.007	n1 - 1	$\frac{3}{2}$	0/2	52,055,80 ^a	47023.030	6081 802°	5	5/2	7/2	42 501 635	28 182 633
6620.051	m < 1	$\frac{11}{2}$	9/2	52 205 74	37942.923	7003 600	5 nl 7	7/2	5/2	42301.033	43 550 705
6620.805	< 1	9/2	7/2	20646 702	30 194.203	7003.009	nl 10	0/2	7/2	29270.388	30641 344
6635 240	m < 1	7/2	0/2	20040.702	33740.232 41641.067	7008.290	nl 7	7/2	7/2	20 276 388	/3 533 21/
6625 520	m 10	7/2	9/2	26575.220	41041.907	7012.232	III /	1/2	1/2	29270.388	45555.214
6636 134	$m \leq 1$	7/2	9/2 5/2	20373.220	41041.907	^a New level	l, see table	- 2.			
6638 406	< 1	2/2	$\frac{3}{2}$	49637.127	34792.273	^b Blend situ	ation wit	- <u>-</u> . h 6152 5	$11 \rightarrow 4^{\prime}$	3 982 532-27 73	$33511 \mathrm{cm}^{-1}$
6650 460	111 < 1	0/2	1/2	40020.98	20012242	(classified i	$\ln \left[ \frac{1}{2} \right]$	10152.5	· · · · , <del>·</del> ,	,,02.332-211.	5.511011
6660 720	m 5	9/2	9/2	JJ 04J./4	30013.342		ui [14]).	6 62640	02 . 4/	501 625 26 76	1 9121
6600 450	111 <b>3</b>	9/2	9/2 1/2	380/9.0/0	43090.331	-Biend situ	ation Wit	11 0304.9	$02 \rightarrow , 42$	2 301.033-26 /9	4.812 cm
0080.450	ni 4	3/2	1/2	21 381.052	30343.8/1	(classified i	ın [ <mark>18</mark> ]).				
0080.330	m 6	5/2	1/2	21 381.052	30343.8/1	"Blend situ	ation wit	h 6479.9	$08 \rightarrow , 40$	5958.11-31 530	$0.050 \mathrm{cm}^{-1}$
0080.870	nl 2	5/2	5/2	43825.98	28862.036	(classified i	in [ <mark>6</mark> ]).				
6682.757	ni 4	5/2	1/2	43142.50	28182.633	^e Waveleng	th in [17]	6981 99	$0 \rightarrow$		

^eWavelength in [17] 6981.990 $\rightarrow$ .

The advantage of this method is that it not only produces tantalum atoms in the ground state, but also in higher excited states with a population large enough to enable laser excitation. To reduce the Doppler width of the hf components the hollow cathode lamp was cooled by liquid nitrogen.

The tantalum-argon plasma within the hollow cathode lamp was irradiated by laser light generated by a tuneable cw dye laser, whose intensity had been modulated by a chopper wheel. The fluorescence lines were selected by a grating monochromator and detected by a photomultiplier. The laserinduced change of the fluorescence signal was intensified by a

lock-in amplifier with the frequency of the chopper wheel as reference. The hf structure was recorded digitally for further evaluation.

For transitions, which were not classified before, the frequency of the laser was set on the strongest hf component of the spectral line under investigation, and LIF signals were searched by scanning a grating monochromator. If at least one LIF signal was found, the laser frequency was scanned over the entire spectral line and its hf pattern was recorded using the fluorescence line with the best signal to noise ratio.

Since the reading precision of the monochromator used was about  $\pm 1$  Å, it was sometimes necessary to determine the

Ν	Jaritz	et	al
---	--------	----	----

Table 2. Energy values, J-values, hf interaction constants and excitation wavelength(s) of the new Ta I levels.

Energy (cm ⁻¹ )	J	A (MHz)	B(MHz)	λ _{exc} (Å)	Comment
Even parity					
49513.59(5)	1/2	-1458(25)	0	(3348.471), 4414.249, 5779.195, 6476 937, 6922 256	
49590.12(2)	3/2	-125(10)	-360(150)	(3104.165), 4399.403, 6444.979	A and B by fitting 3104.165, 3287.265, 3810.665, 3944, 180 from ET spectra
50322.75(1)	9/2	673.8(30)	-1025(50)	6440.266, 6858.458	5610.005, 5944.180 Holl 11 spectra
50760.94(4)	5/2	616(30)	-290(200)	(3050.943), 6442.354	A and B by fitting 3050.943, 3458.521,
51119.81(5)	3/2	2041(45)	-281(400)	(3337.691)	3481.668 from FT spectra A and B by fitting 3337.691, 3438.710, 4109.851 from FT spectra ^a
51210.36(4)	5/2	598(4)	115(130)	(3589.994), 6464.796	1109.051 Holl 1 1 spectru
51455.10(3)	3/2	776(4)	-275(30)	6353.820, 6417.320	
52253.46(2)	11/2	953(2)	-907(100)	(3669.412), 4256.509, 6081.060	
52885.13(1)	3/2	411(6)	-70(200)	(3385.446), 4246.599	A and <i>B</i> by fitting 2907.785, 3652.264, 3385.446 from FT spectra
53050.68(3)	9/2	977.8(9)	-354(70)	(3432.614), 5799.810	A 1.D.1 Gui: 2001 200 4115 801
53 055.89(3) 53 314 62(3)	11/2 7/2	449.7(5) 203(10)	370(180) -460(70)	(3291.320), 6615.007	A and B by fitting 3291.320, 4115.891, 5142.500 from FT spectra
53514.02(3) 53512 66(2)	0/2	1009(3)	-400(70) -802(220)	(3242 557) 6526 304	
53 598 985(10)	7/2	390(4)	-302(220) 518(35)	5891 893 5951 060	
5377461(2)	5/2	412(5)	-723(180)	4325 930 4369 423	
54 593 11(3)	9/2	432(10)	1200(400)	$(3103\ 473)\ 4334\ 720$	
54677 34(3)	7/2	917 3(2)	1200(400) 1184(40)	5840 850 6713 715	
54751 88(3)	3/2	632(15)	111(60)	4309 504 5838 923 6450 354	
55059.72(1)	13/2	1030(3)	700(100)	6368.066.6412.160	
55080 053(8)	9/2	881 3(20)	641(15)	4245 087 4356 529 6945 624	
55 323 98(3)	9/2	603(5)	413(220)	(3294 802) 6496 887	
56435.09(1)	13/2	1041(5)	-300(400)	(3488.526), 5855.100	
Odd parity					
42604.76(5)	1/2	1562(6)	0	6303.113, 6580.455	
48265.60(1)	3/2	73.7(2)	300(12)	6513.385	
48477.26(3)	3/2	753(1)	381(30)	5965.837, 6137.095, 6424.861	
48506.91(5)	1/2	2879(6)	0	(14463.51), 6125.958	
48581.67(3)	7/2	742.2(10)	1297(8)	5928.887, 6099.977	
48997.39(2)	5/2	818(3)	110(100)	(3620.014), 4327.192	A and B by fitting 3620.014, 13519.240, 15390.410 from FT spectra
49898.50(3)	3/2	1190(5)	606(60)	6498.630, 6739.950	
50599.71(2)	1/2	-464.5(20)	0 10((100)	(3282.396), 6396.283	
50000.40(4)	1/2	/00(0)	196(100)	2992.991, 0191.938, 0200.391	
50751 28(5)	1/2	-1390(2)	0	(5200.857), 0550.728	
50701.20(3)	5/2	800.3(10)	182(30)	0137.310, 0103.028 5841 084 6150 282	
50791.77(5) 51207.82(4)	5/2	502(5)	J8(9) 436(150)	(3271 180)	A and R by fitting 3271 180 3370 148
51207.62(4)	1/2	392(3)	430(130)	(32/1.189)	A and b by number $5271.169, 5579.146,$ 14819 230 from FT spectra ^a
51343.29(2)	7/2	456(6)	-225(25)	(3592.110), 6141.713, 6163.210	A and B by fitting 3256.753, 3497.705, 3592.110 from FT spectra
51828.83(3)	3/2	335(5)	275(20)	(3378.229), 5963.803, 6603.562	I
52876.59(2)	5/2	456.3(10)	-380(90)	(3404.537), 4236.060	A and B by fitting 3404.537, 3328.631,
	,	( )			16960.020 from FT spectra
54110.21(1)	11/2	653(5)	71(150)	(3310.603), 4241.872	A and B by fitting 3155.046, 3267.535, 3310.603 from FT spectra
54631.54(3)	11/2	671(8)	25(200)	(3254.416), 4455.308	A and B by fitting 3104.413, 3254.416, 3417.232 from FT spectra
54831.96(1)	15/2	150.3(10)	3658(25)	(3192.227)	A and B by fitting only 3192.227 from FT spectra ^a
55785.57(5)	9/2	370(3)	658(25)	(2997.005)	<i>A</i> and <i>B</i> by fitting 2997.005, 3238.710 from FT spectra ^a
55844.28(3)	11/2	274(10)	1580(400)	(3130.811), 4388.558	

^aLevel not confirmed by excitation with laser light.

wavelengths of the LIF lines more accurately. This was done by using the second chopper wheel in front of the input slit of the monochromator to modulate the whole fluorescence light of the hollow cathode lamp. The output signal of the photomultiplier then also became the input for a second lock-in amplifier, with the frequency of the second chopper wheel as reference. The grating monochromator was then scanned over a certain spectral range, with the laser light frequency set to the highest component of the excited hf pattern, and the output signals of both lock-in amplifiers were recorded simultaneously on separate traces. In this way the spectrum of the hollow cathode lamp can be used to calibrate the monochromator wavelength scale. The recorded hollow cathode spectra were compared with the corresponding parts of the FT spectra. In this way, the wavelength of a LIF line could be determined with an accuracy of  $\sim 0.05$  Å, despite the relatively low resolution of our monochromator (focal length 0.5 m).

The wavelength calibrated FT spectra (see [7]) cover a broad range of wavelengths from 2000 to 50000 Å. Using the dispersion formula of Peck and Reeder [14] for the refractive index of the air, the centre-of-gravity air wavelengths of the Ta lines were determined. For weak lines, the uncertainty is less than  $\pm 0.003$  Å, mainly caused by the noise of the FT spectra [15]. The FT spectra contain completely or at least partially resolved hf patterns. Although the resolution is limited by the Doppler line widths of the hf components, the line profile often allows the identification of the transition, when the hf constants of the levels involved are known or can be determined. Due to the high wavelength accuracy of the FT spectra and the good accuracy of the lambdameter used, the wavelength of the laser light was precisely set to an hf component of the investigated line. A computer program [13] was used to propose suggestions for line classification. These possibilities were then either rejected or confirmed by selecting certain fluorescence lines by means of the monochromator to confirm the increase or diminution of the population density of one of the combining levels through the use of the laser. By looking at the possible classifications proposed by the computer program for the line under investigation, inappropriate possibilities could be excluded when the corresponding hf structure pattern was found not to fit the observed hf pattern, and blend situations were confirmed by laser excitation.

If at least one unknown energy level was involved in the excited transition, no useful suggestion for classification was available. With the laser light frequency fixed at the highest hf component observed in the FT spectrum, LIF signals were searched by scanning the monochromator. If at least one LIF signal was successfully found, the hf pattern was recorded by scanning the laser frequency over a certain range (up to 40 GHz).

## 3. Results and discussion

Table 1 lists all excited new lines. The wavelengths are given in Å (in air) in column 1. Column 2 contains the signal-tonoise ratio (SNR) of the lines observed in the FT spectra. Because the FT spectra are not intensity calibrated, the SNR provides only a very approximate idea of the line intensity. When a line from the list was excited, but did not appear in the FT spectra, the wavelength calculated from the level energies is given and the intensity was set to '<1'. The designation 'nl' means 'new line'. In columns 3 and 4, the *J*-values of the combining levels are listed, and their energy values are given in columns 5 and 6. A new energy level involved in the transition is distinguished by remark 'a' after the energy value of the level. As in our earlier papers [6–9], for previously

 Table 3. Improved energy values for some Ta I energy levels of even parity.

J-value	Energy (cm ⁻¹ )	Energy	Earlier
	this work	(cm ⁻¹ )	works
7/2	25894.22(2)	25894.09	[4]
3/2	27412.44(3)	27412.36	[4]
5/2	27715.82(4)	27715.66	[4]
5/2	34514.897(30)	34514.76(5)	[8]

known levels we have used improved energy values obtained by R Engleman [16] from the analysis of FT spectra, as far as available.

The data of the new levels are listed in table 2. The energy values are given in column 1 (in cm⁻¹), the *J*-values in column 2, and the hf constants *A* and *B* in columns 3 and 4; both are given in MHz. Column 5 shows the wavelength(s) of the excitation line(s) given in Å (in air). When a level involved was found and calculated by considering an unclassified line in the FT spectra using the methods described in [13], its wavelength is bracketed. Column 6 contains additional comments.

The accuracy of the energies of the new levels depends on whether or not the excitation and fluorescence lines appear with a good SNR in the FT spectra, and on the accuracy of the energies of already known levels involved in the transitions. In the very worst case, when no FT wavelengths are available, the wavelength accuracy of our lambda meter ( $\pm 0.01$  Å) limits the accuracy to  $\pm 0.05$  cm⁻¹.

A total of 666 spectral lines could be classified due to our present work, of which 221 lines were excited by laser irradiation and are listed in table 1. The other 445 lines were classified either via laser-induced fluorescence or via their hf pattern and centre of gravity wavenumber, both from the FT spectra. These newly classified lines can be found in tables 5 and 6 of this paper, which are available via Internet only (http://iep.tugraz.at/ta).

An updated complete list of the observed Ta I and Ta II spectral lines as well as a viewing program can be downloaded from the Institute's homepage at http://iep.tugraz.at/ta.

During our investigations we found that the energy values of some previously published levels with even parity did not fit to the experimental results. The corrected energy level values are listed in table 3. The table comprises: in column 1 the angular momenta J; in column 2 the improved energy level values, in column 3 the energy values as previously reported in [4] or [8], which are annotated in column 4.

As an example for the methods used to find a new level, an indepth discussion of the finding of the new level with energy 54 831.88 cm⁻¹, J = 15/2, odd parity, follows.

When investigating the FT spectra systematically, we came to a line listed in the spectral tables of MIT [10] with a wavelength  $\lambda = 3192.253$  Å and a relative intensity of 70. The line had not been previously classified. In our FT spectra, this spectral line appeared with a centre-of-gravity wavelength of  $\lambda = 3192.227$  Å, an hf splitting of about 0.3 Å, and with an SNR of 75 (see figure 1).

In the FT spectra the components of an hf pattern appear with intensity ratios which are very close to the theoretically predicted ratios. A fit of such pattern has to explain not only the position but also the relative intensity of the components.

Upper level	Lower level	Quality	Upper level		Lower leve	el
J	J'	of the fit	A (MHz)	B(MHz)	A (MHz)	B (MHz)
8	7	19.3	169(20)	3288(350)	962(2)	1559(2000)
7.5	6.5	19.6	176(10)	2349(650)	995(15)	422(650)
7	6	15.9	177(3)	2329(400)	1053(3)	-73(300)
6.5	5.5	10.7	173(13)	2630(330)	1112(15)	-264(240)
6	5	7.3	177(25)	2292(1000)	1191(30)	-1050(850)

**Table 4.** Possible *A* and *B* values obtained by fitting the line  $\lambda = 3192.227$  Å with different pairs of *J* values. The quality of the fit indicates the best combination of *J* values.



Figure 1. Part of a FT spectrum containing the unclassified Ta line  $\lambda = 3192.227$  Å.

With eight well-resolved hf components (corresponding to diagonal components of the hf transition,  $\Delta F = \Delta J$ ) and the fact that the smallest component still has a relatively high intensity compared to the highest component (see figure 1), this indicates that levels with high angular momenta are involved in the transition. We tried to fit the line pattern starting with the angular momenta J = 8 for the upper level and J' = 7 for the lower level, treating the hf constants A and B of both upper and lower levels as free parameters. Then we decreased the J and J' values in steps of 0.5. The hf constants obtained, together with the quality O of the fit procedure (O is inversely proportional to the least square error sum) are given in table 4. Almost the same fit quality was obtained for both J = 8 to J' = 7 and J = 7.5 to J' = 6.5 combinations. Integer J values correspond to the spectrum of single ionized Ta (Ta II). However, our list of known ionic levels gives no levels with J > 6. Thus a transition J = 8 to J' = 7 is very unlikely.

The assumption that the investigated spectral line is a line belonging to the spectrum of the tantalum atom (Ta I) is confirmed by its appearance in a spectrum on a photographic plate produced during the present work using the grating spectrograph in Poznan (see figure 2). This plate was produced in order to distinguish between lines belonging to the Ta I and the Ta II spectrum. It contains a Fe-Ar spectrum as reference and a Ta-Ar spectrum, both produced by hollow cathode lamps which were operated with a direct current of 100 and 70 mA, respectively. A third Ta-Ar spectrum was produced by a hollow cathode lamp operated with current pulses (50 pulses s, pulse duration  $\approx 1$  ms, pulse current  $\approx 100$  A). The exposure time of the photoplate was the same for both Ta spectra (cw and pulsed). By comparing both Ta-Ar spectra, one can see, that in the spectrum of the pulsed light source Ta II lines appear much stronger than in the dc discharge, while the intensities of the atomic lines remain constant or become even weaker. The line  $\lambda = 3192.227$  Å has the same intensity in both spectra, which supports classifying the line as belonging to the atomic spectrum.



**Figure 2.** Part of a photoplate containing three spectra. The top Fe–Ar spectrum is used as a reference spectrum. The bottom Ta–Ar spectrum was obtained using a cw hollow cathode lamp. In the middle is a Ta–Ar spectrum obtained using a hollow cathode lamp operated with current pulses. Here Ta II lines appear intensity enhanced. All spectra were produced by a grating spectrograph (focal length 2 m, fifth order).

We thus assumed that the investigated line can be explained as the transition from a new level with J = 7.5 to a level with J' = 6.5. Comparing the fit result of A = 995 MHz for the lower level to the *A* values of known levels with J' = 6.5, we found two levels which could serve as lower levels for the transition under investigation: 23514.923 cm⁻¹, even parity, A = 965.1(21) MHz, B = 1719(49) MHz, and 27777.9 cm⁻¹, odd parity, A = 1020.4(21) MHz, B = 1431(49) MHz.

Moreover, all other levels with J' = 6.5 would lead to an energy of the new upper level above the ionization limit  $(60\,891.4 \,\mathrm{cm^{-1}} \ [17])$ .⁶ Thus we used the *A* and *B* values of the above given levels and fitted the line again, now only treating *A* and *B* of the upper level as free parameters. A higher quality fit was obtained with the *A* and *B* factors of level 23 514.923 cm⁻¹. The hf constants for the new upper level, A = 150.3(10) MHz and B = 3658(25) MHz, could be obtained with fit quality of 19.0 (see figure 3). Then we added the vacuum wavenumber of the centre-of-gravity wavelength ( $\lambda = 3192.227 \,\mathrm{\AA}$ ) to the energy of the lower level and introduced a new upper level 54 831.96 cm⁻¹, J = 7.5, odd parity.

Normally, if we introduce a new level, this level should explain the wavenumber and the hf pattern of other, previously unclassified lines. If one of the calculated transitions to known levels is inside the wavelength regions of our lasers, we try to confirm its existence by further excitations. But due to the large angular momentum J = 15/2, between 2000 and

⁶ References [18–20] are used in tables 5 and 6, which are available via Internet (http://iep.tugraz.at/ta).



**Figure 3.** Best fit of the FT spectrum of the line  $\lambda = 3192.227$  Å, assuming a transition J = 15/2 to J' = 13/2. The hf constants A' and B' of the lower level were fixed; the fit procedure used normalized theoretical intensities of the components. The fit procedure treated A, B, and the centre of gravity frequency as free parameters. The lower trace shows the difference between the experimental and the fitted curve.

50 000 Å only three possible transitions to lower J' = 13/2or 15/2 levels are predicted. Of these predicted lines, only  $\lambda = 3192.227$  Å appears in the FT spectra. The line  $\lambda =$ 4115.825 Å does not appear in the FT spectra and is just outside the region of our dye laser working in the blue region.

 $\lambda = 46740.45$  Å is far in the infrared region and also does not appear in the FT spectra. Nevertheless, we believe that introduction of this level is correct.

Table 5 and 6, which contain lines classified via laserinduced fluorescence and via the hf patterns observed in the FT spectra, are available only via Internet. These tables are similar to tables 2 and 3 in [9].

#### 4. Conclusion

In recent years, we have been able to clearly classify a large number of additional lines obtained from our FT spectra. In some cases, previously unknown energy levels were found, enlarging the knowledge of the fine structure of the Ta I level scheme using the hf structure of the spectral lines. The presented work demonstrates again how successful laser spectroscopic investigations of spectral lines supplemented by the evaluation of high-resolution FT spectra is, combined with spectra of different light sources. Future projects focus on improving knowledge about Ta I and Ta II lines in the ultraviolet region.

# Acknowledgment

The presented work has been supported by Austrian Science Fund, project no. P 15425.

## References

- [1] Guthöhrlein G H and Windholz L 1993 Z. Phys. D 27 343
- [2] Hammerl H, Guthöhrlein G H, Elantkovska M, Funtov V, Gwehenberger G and Windholz L 1995 Z. Phys. D 33 97
- [3] Moenik H, Arcimowicz B, Salmhofer W, Windholz L and Guthöhrlein G H 1996 Z. Phys. D 36 129
- [4] Messnarz D and Guthöhrlein G H 2000 Eur. Phys. J. D 12 269
- [5] Arcimowicz B, Huss A, Roth S, Jaritz N, Messnarz D, Guthöhrlein G H, Jäger H and Windholz L 2001 Eur. Phys. J. D 13 187
- [6] Jaritz N, Jäger H and Windholz L 2002 Eur. Phys. J. D 18 267
- [7] Messnarz D, Jaritz N, Arcimowicz B, Zilio V O, Engleman R J, Pickering J C, Jäger H, Guthöhrlein G H and Windholz L 2003 Phys. Scr. 68 170
- [8] Jaritz N, Guthöhrlein G H, Windholz L, Messnarz D, Engleman R J, Pickering J C and Jäger H 2004 *Phys. Scr.* 69 441
- [9] Jaritz N, Windholz L, Messnarz D, Jäger H and Engleman R J 2005 Phys. Scr. 71 611
- [10] Harrison G R 1985 Massachusetts Institute of Technology Wavelength Tables 4th edn (Cambridge, MA: MIT Press)
- [11] Meggers W F, Corliss C H and Scribner B F 1975 Natl. Bur. Stand. (US) Monograph 145-Part I
- [12] Meggers W F, Corliss C H and Scribner B F 1961 Natl. Bur. Stand. (US) Monograph 32-Part I
- [13] Windholz L and Guthöhrlein G H 2003 Phys. Scr. T 105 55
- [14] Peck E R and Reeder K 1972 J. Opt. Soc. Am. 62 958
- [15] Pickering J C 1996 Astrophys. J. Suppl. 107 811
- [16] Engleman R Jr 1987 Improved analyses of Ta I and Ta II Symposium on Atomic Spectroscopy and Highly-Ionized Atoms, Lisle, IL (16 August 1987) Engleman R Jr et al in preparation
- [17] Simard B, Kowalczyk P and James A M 1994 Phys. Rev. A 50 846
- [18] Van den Berg G J, Klinkenberg P F A and Van den Bosch J C 1952 Physica 18 221
- [19] Kiess C C 1962 J. Res. Natl. Bur. Std. A 66 111
- [20] Klinkenberg P F A, Van den Berg G J and Van den Bosch J C 1950 Physica 16 861