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Proton transport model in the ionosphere
1. Multistream approach of the transport equations
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Abstract. The suprathermal particles, electrons and protons, coming from the magnetosphere
and precipitating into the high-latitude atmosphere are an energy source of the Earth’s ionosphere.
They interact with ambient thermal gas through inelastic and elastic collisions. The physical
quantities perturbed by these precipitations, such as the heating rate, the electron production rate,
or the emission intensities, can be provided in solving the kinetic stationary Boltzmann equation.
This equation yields particle fluxes as a function of altitude, energy, and pitch angle. While this
equation has been solved through different ways for the electron transport and fully tested, the
proton transport is more complicated. Because of charge-changing reactions, the latter is a set of
two-coupled transport equations that must be solved: one for protons and the other for H atoms.
We present here a new approach that solves the multistream proton/hydrogen transport equations
encompassing the collision angular redistributions and the magnetic mirroring effect. In order to
validate our model we discuss the energy conservation and we compare with another model under

the same inputs and with rocket observations. The influence of the angular redistributions is

discussed in a forthcoming paper.

1. Introduction

A few decades ago the theoretical analysis of the auroras was
concerned mostly with the study of the electron precipitations.
Indeed, electrons seemed to be the main source for the input
energy needed to the excitation of the ambient neutrals at the
origin of the northern lights. However, proton precipitations
have been detected from ground observations [Vegard, 1948],
and satellite or rocket measurements have corroborated their
presence [Sharp et al., 1967, 1969; McNeal and Birely, 1973,
and references therein]. A statistical study [Hardy et al., 1989]
indicated that the integral energy flux of protons can equal or
exceed that of the electrons for some latitudes and local times
on the eveningside of the oval and that it is a significant
fraction of the electron integral energy flux for much of the
oval.

In response to these measurements, which tended to prove
that protons were able to have a major influence on the polar
ionosphere, the proton transport theory has received increased
attention. To describe the energy loss undergone by the
precipitating protons, studies by Edgar et al. [1973, 1975]
assumed that the particles were slowed down continuously in
the medium. By introducing an energy deposition function and
setting a value for the energy loss per electron-ion pair, Rees
[1982] determined several physical quantities, such as electron
production or emission rates. Jasperse and Basu [1982] were
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the first to apply linear transport theory to proton-hydrogen
aurora: Comparisons with incoherent scatter radar data showed
that the electron density, an integrated quantity, agreed well
with observations [Basu et al., 1987; Senior et al., 1987].
This first model derived closed-form analytic solutions. Basu
et al. [1990] described a new, fully numerical model without
the limiting approximation used in the earlier model.
Moreover very recently a solution of transport equations in
two spatial and three velocity dimensions was proposed by
Jasperse [1997] to investigate the beam-spreading effect. The
proton transport was also simulated by a Monte Carlo method
and the collision-by-collision degradation scheme [Kozelov
and Ivanov, 1992; Kozelov, 1993; Kozelov and Ivanov,
1994]. All these methods aim to describe the energetic
degradation of the precipitating protons by interacting with
ambient neutrals and the derived quantities, such as the
electron production, the energy deposition function or the
energy loss per electron-ion pair. Recently Decker et al.
[1996] performed a comparison of three of these methods, a
Monte Carlo simulation [Kozelov and Ivanov, 1992], a
discrete energy loss solution to the linear transport equations
[Basu et al., 1993], and a continuous slowing down
approximation [Decker et al., 1996]. The agreement of the
three models is excellent except at the lowest altitudes, largely
below the region where the bulk of energy deposition and
ionization takes place.

If today the purpose of a good description of energy
degradation seems to have been reached, another problem
remains unsolved. That deals with the origin of the red Doppler
shift of H emissions. Historically, there are the Balmer H
emissions observed from ground that allowed the detection of
the proton precipitations [Vegard, 1939, 1948], and the first
theoretical studies focused on these emissions [Eather, 1967,
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and references therein]. However the “red” Doppler shift of the
H emissions on zenith profiles, defined as the extension of the
profile at wavelenghts higher than the characteristic
wavelength of the line, has not yet been surely explained: It
attests to upward H atoms and thus proves that angular
redistribution acts upon the proton beam. As the transport of
protons and hydrogen atoms is coupled via charge-changing
reactions, angular redistribution of hydrogen atoms can find
its origin in collisions or in the effect of the nonuniformity of
the magnetic field lines; but the role played by each of these
two possible causes has not yet been evaluated. Indeed,
experiments alone cannot give the solution. Modeling as well
is needed to resolve this problem. And the best way to conduct
such a study is to first determine the fluxes of protons and
hydrogen atoms. Previous models based on the solution of the
transport equations have always neglected the two types of
angular redistributions [Basu et al., 1993; Decker et al., 1996].
No upward particle flux is then generated. Other models based
on the Monte Carlo method have included angular
redistributions sources and were applied to a monoenergetic
beam in a N, atmosphere. Studies of the effects of these
sources have been carried out for the collisional scattering on
integrated quantities [Kozelov and Ivanov, 1992] and for the
magnetic mirror force [Kozelov, 1993]. However the origin of
the red shift has not yet been investigated with these models.

In the present study we solve the transport equations in a
very general way that takes into account the collisional and
magnetic mirroring angular redistributions. Moreover, no
restrictions are applied on the incident proton beam or on the
neutral model. We shall describe the way we have followed.
The energy loss is assumed to be continuous which is justified
a priori in section 2. The solution based on the introduction of
dissipative forces is done in section 3. In the last section the
model is validated, in the case of no angular redistribution,
through a comparison with the model of Basu et al. [1993],
whose results are presented by Strickland et al. [1993].
Another validation based on the evaluation of energy
conservation is also presented. Finally, comparisons with the
Proton I rocket data are shown [Soraas et al., 1974]. The
influence of the angular redistributions, especially the
magnetic mirroring effect, is the subject of a forthcoming
paper.

2. Continuous Energy Loss

Our solution makes a link between two approaches
presented above: The continuous slowing down (CSD)
approximation is applied to part of the collision operator in
order to solve the two coupled transport equations. Under the
CSD approximation the energetic particles, protons, and
hydrogen atoms are assumed to be continuously degraded in
energy in the medium. Such an approximation can be justified
a priori if the energy losses W of the energetic particles are
small compared to their energies E. In this section we
ascertain this assumption by evaluating the relative energy
loss W/E of protons and hydrogen atoms.

The ambient neutrals considered here are N,, O,, and O. The
collision processes between an energetic particle, proton or H
atom, and a neutral particle are the ionization or the excitation
of the neutrals, the elastic scattering of the energetic particles,
and the charge-changing reactions, that is, capture and
stripping. For the inelastic processes, that is, for all those
except the elastic scattering, the energy loss is provided by
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Basu et al. [1993]. The associated relative energy loss is
plotted versus the energy of the protons or hydrogen atoms in
Figure la. This loss is less than 2% above 1 keV. Therefore
the CSD approximation is justified. This needs of course
constant checking. That will be shown later in section 4.2 on
through the computation of the energy conservation.

Unlike electrons, protons and hydrogen atoms, owing to
their higher mass, can undergo a significant energy loss during
elastic scattering. There is an interaction between the incident
particle of mass m and a neutral target particle of mass m,. The
latter is assumed to be at rest because the thermal velocity is
much smaller than the speed of the incoming energetic
particles. As the type of the interaction between the two
particles is elastic, it is possible to apply energy and
momentum conservation. This yields the following form for
the relative energy loss:

2
w m m 2 2
— = 1- . cos@+,| —%——sin 1
E (m+ma) 14 m2 ¢ ( )

where @ is the scattering angle of the energetic particle. The
mass m, which refers to the proton or H mass, is equal to
1 g/mol, that is, 1.67x107*g; the mass m, is equal to
14 g/mol, that is 2.34x107 g, for N and to 16 g/mol, that
is, 2.67x10% g, for O.

The relative energy loss for elastic scattering is presented
on Figure 1b. It is independent of the energy of the incident
particle but depends on the scattering angle of this particle.
Moreover, it can reach values higher than 20%. However, the
most probable scattering angles are lower than 20° by far
[Fleischmann et al., 1967, 1974; Newman et al., 1986;
Johnson et al., 1988; Gao et al., 1990]; within this angle
range, the relative energy loss does not exceed 1%. Therefore
the CSD approximation is also a priori justified for this
process.

Such an approximation has already been applied by Edgar et
al. [1973, 1975]. The method they used is described by Miller
and Green [1973]. It is based on the solution of the following
equation:

1 dE

LE) = n dz

@
where dE is the average energy loss over an incremental
distance dz in a gas of density n.

The energy loss function L can be deduced from cross
sections and energy losses associated to the different collision
processes. However, owing to the charge-changing collisions,
it involves the unknown proportion of the different charge
states in the beam. Therefore they assumed that the beam is
charge equilibrated; that is, the loss function for a given
charge state is weighted by the relative equilibrium fraction.
But at the top of the atmosphere, the beam is usually a pure
proton beam and tends to be at equilibrium only as the beam
penetrates into the atmosphere. In addition, although it is easy
to integrate (2) when the medium is made of one constituent,
there is no analytical solution in a multicomponent
atmosphere, as in the Earth’s atmosphere.

Recently an improved method was proposed by Decker et al.
[1996] which uses a nonequilibrium flux. At each altitude level
the charge state fractions are deduced from the transport
equations by neglecting the energy loss. These fractions are
used to determine the total energy loss functions; (2) is then
solved to estimate the effects of energy degradation on the
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Figure 1. (a) Relative energy loss versus the energy of the proton or the H atom, for the inelastic processes.
For each reaction the neutral species are specified in the order of the increasing values of the energy loss. For
stripping, the energy loss is independent of the neutral species. (b) Relative energy loss versus the scattering
angle of the proton or H atom. A detail is given at low angles, below 20°; that is, the most probable scattering

range deduced from the data of differential cross sections.

incident proton beam. However, it is only the average energy
loss for protons and H atoms together which is calculated,
while the energy losses of charge-changing collisions are very
different between protons and H atoms. Moreover, this method
can be applied only to a monoenergetic and monodirectional
streams, and it has to be assumed that the pitch angle of
precipitating particles is constant as the particles penetrate

down through the atmosphere. Therefore no angular
redistribution can be included.

In the present study we apply the CSD approximation, that
is the continuous degradation of precipitating particles in
energy, and we introduce energy loss functions deduced from
the cross sections and energy losses. But the analogy with the

method of Miller and Green [1973] or the one proposed by
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Decker et al. [1996] stops here. The loss functions we use are
unique for each collision process between an energetic particle
of a given charge state and a given neutral species without
assumptions on the charge state proportion or without
introducing an average energy loss. Moreover; the energy loss
functions can depend on the angular redistribution. Finally,
they are directly introduced in the general transport equation
which describes the evolution of the flux of protons or of
hydrogen atoms in altitude, in energy, and in pitch angle.

3. Solution of the Transport Equations

Our description of proton transport in the Earth’s auroral
region is based on the Boltzmann equation:

a—f(r, v,0)+v.V_ f(rv, t)+Vv(£f(r, v, t))=(§f—) (3)

ot m ot coll
where r and v are the position and the velocity vectors and the
term on the right side in cm™® s2 is the usual source or sink term
due to collisions with neutrals.

The unknown f is the distribution function of one particle in
the six-dimensional phase space (r,v). Its umnits are cm™® s3.
This equation is the general transport equation, which is valid
for a dissipative system. The originality of our solution lies in
the fact that we have introduced dissipative forces to describe
energetic degradation with neutrals usually taken into account
in the collision term on the right side.

3.1 With the Forward-Scattering Approximation

In the first stage we assume that the particles are not
redistributed in angle during a collision. The CSD
approximation allows us to use a continuous function in
energy to describe the energetic degradation of protons and H
atoms; this function, L, is the loss function defined
previously, in section 2. But here this function is relative to a
process j (ionization, excitation, or charge-changing
reactions) between a particle y (proton or H atom) of energy E
and a neutral o

L),y (E) =W, (E). 0}, (E) @)

where W and o are the energy loss and the cross section,
respectively.

By analogy with friction of energetic electrons on the
thermal ambient electrons [Stamnes and Rees, 1983], it is then
possible to introduce a dissipative force to consider the energy
loss of the particle y during the process j with the neutral
species oL

F = —ng(s) L{,,y(E).% )

where n, is the density of species o and s the space variable
taken along the magnetic field line.

Therefore, after the variable change from the distribution
function fto the particle flux @, a measurable quantity, the
transport equation (3) can be written as [Stamnes and Rees,
1983]

For protons (P):

d du o
yg(dbp (s E w))+ yﬁ—a—; (@p (s E, 1))

DD et () (s 0)

o k=ioni,exci
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D a9 {18(B) @l E.0)

= —2 ny(s). o (E). Dp(s, E, 1)

+2 ng(s). o3 (E). @y(s E, p) (6a)
For H atoms (H):
12 (@ (5. E. 1)

DY etk (B 2yl 0)

o k=ioni,exci

_Z Ry (s)aiE(Ll,?(E). Dp(s, E, ;1))

== 1a(s)- 0% (B) @yl )

+Z ng(s). o (E). @p(s, E, 1) (6b)

The units of the flux @ are cm? s eV! srl. The variable p
is the cosine of the pitch angle, the angle between the
magnetic field line and the velocity vector of the particle. It is
negative for downward, positive for upward particles. The
coupling of the two transport equations (6) is via the charge-
changing reactions, that is, the capture, denoted by 10, and the
stripping, denoted by 01.

The steady state situation is assumed: thé collision
frequencies being of about 1 to 100 s™!, the characteristic time
of these processes is largely smaller than the duration of stable
proton precipitations ranging from several minutes to few
hours. Electric fields are neglected. In velocity space the
particle fluxes are assumed to possess azimuthal symmetry
about the magnetic field lines. Thus the third term of (3)
applied to the magnetic force in the proton equation becomes
zero, as is shown in Appendix A. Moreover, the spreading of
the beam, which is induced by the first path of the neutralized
protons [Iglesias and Vondrak, 1974], is taken into account
through an attenuation coefficient ¢ applied to the incident
proton flux [Jasperse and Basu, 1982]. It is then possible to
restrict ourselves to plane parallel geometry. The space
variables reduce to one only, denoted by s, taken along the
magnetic field line. This line is assumed to be a straight line.
The region of interest is located between 80 and 800 km in the
high-latitude region, where the variation of the dip angle does
not exceed 0.8° and such an assumption is justified.

Protons are charged particles and undergo the magnetic
mirroring effect. This is taken into consideration by the
second term on the left side of (6a). Its form is discussed in a
forthcoming paper. For hydrogen atoms this second term is
assumed to be zero.

The process k is an ionization (ioni) or an excitation (exci).
Since the forward-scattering approximation is assumed in
section 3.1, the elastic scattering term is omitted. For a
process k the energy redistribution of particles y (P or H) is
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considered through dissipative forces depending on the
continuous loss functions L. Hence it appears in the left side
and not in the right side, as in (3). The quantities describing
the energy 'degradation can be put into two terms (see
Appendix B, relation (B2), in the case of forward-scattering
approximation):

— ny (). j ok, (E'= E). ®,(s,E', ) dE’

>E
+ ng/(s). O"I;,Y(E). @, (s E, 1)

The first illustrates the loss of particles Yy of energy E’
which leads to the production of particles y of lower energy E.
The second describes the loss of particles y of energy E.

Unlike the process k leading to the production of a particle
¥ from a particle of the same charge state but of higher energy,
a charge-changing reaction leads to the production or the loss
of a particle of the other charge state: for these reactions, a
part (at least) of the energetic degradation is present on the
right side. Consider for example the case of the transport of
the protons described by (6a). The capture 10 consists of the
loss of protons of energy E. This is taken into account in the
first term on the right side of (6a). The stripping 01 leads to
the production of protons from H atoms of higher energy. This
production can be considered thanks to a loss function applied
to the H atom flux. It is included in the last term on the left side
of (6a). Also, this term takes the loss of H atoms of energy E
into account. Such a sink needs not be considered in the
equation of protons: the second term on the right side of (6a)
allows us to annihilate it. For H atom transport it is the same
in switching P and H and in switching 01 and 10.

It should be noted that these productions or losses are
artificial. There is not a particle which is absorbed and another
which is produced. It is the same particle. However, such a
separation is useful in the calculation of the gain or the sink of
particles X of energy E and it does not affect the final result.

3.2 With Collisional Angular Redistribution

If we now consider the angular redistribution during a
collision, a form more complete for the loss function has to be
adopted:

Ly (E', ' p)

= Wiy (B, 1> ) 04 (E) 84 (E' '~ ) )

where { represents the phase function illustrating the angular
redistribution of the energetic particle 7y, from the cosine of the
pitch angle y’ to u, during the process j with a neutral of
species o. The process j can be an ionization, an excitation,
an elastic scattering, or a charge-changing reaction.

So the coupled set of transport equations based on (6) takes
the following shape:

0 du o
K (@p (s E p))+ u—d% » (@p (s E )

-Zna(s). 2 Idu"%(lfx,p(E,u'—)u). d)p(s,E,y'))

[+4 k=ioni,exci,scat

"a (s) jdu LB, > 1), By(s,E, 1))
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>, nalo) [t O (E). By(s,E.11)

WE,w— p). (8a)

5, fud

k=ioni,exci,scat

aHE#_)“) ¢H(SE“))

%

na(s) Jdu L(E.1 > p). @p(s. E, 1))

=_2 1a(5). 8 (E). Buls. E 1) + Y 1gs)

o a

x Y jdu'. Co n(E ' p).og y(E). y(s E w)

k=ioni,exci,scat

o (E) @p(s.Ep)  (8b)

na(s) J.du AE,u— p). ol

o

Equation (8a) is for protons (P), and (8b) is for H atoms (H).
The different considered reactions are ionization (ioni),
excitation (exci), elastic scattering (scat), capture (10) and
stripping (01). The total cross section o gathers the three
first ones and capture for protons and stripping for H atoms.

The energetic degradation of particles is considered on the
left side of (8a) and (8b) through two terms depending on loss
functions. Owing to the angular redistribution, these terms
have to be integrated over the incident pitch angles u’. On the
right side the collision term is reduced to the pure elastic
reactions for all processes (ionization, excitation, elastic
scattering, capture, and stripping), the energy losses are
included on the left side.

Under the CSD approximation (8a) and (8b) are completely
equivalent to the classical form where energetic redistributions
are considered in the collision term (right side) as discrete
losses. This is demonstrated in Appendix B. But the new form
of transport equations obtained here is more general, and it
allows ‘us to include magnetic and collisional angular
redistributions without complicating the numerical solution
too seriously.

3.3 Numerical Solution

To obtain proton and H atom fluxes, one must solve the set
of transport equations, (8a) and (8b), numerically. This
process is two-fold. First is the discretization with respect to
energy and angle on a two-dimensional grid. Second is the
determination of the solutions by integrating between two
successive points along the altitude scale. The first stage
approximates partial derivatives in energy and angle with
finite-differences and it is not impeded by the introduction of
dissipative forces. Indeed, after this first stage the proton
transport system (8a) and (8b) reduces to the very malleable
inhomogeneous linear system of first-order differential
equations in s:
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=A.®d+B )

P

where the unknown @ is either the downward or upward flux of
l}lULUllb aud H alUlllB over lhc Cucls_y suu aud Lhc hdlf allElC
grid. The matrix A describes the interaction between particle
fluxes belonging to the same half-angle grid, that is, either
within the downward flux or within the upward flux. If no
angular redistribution is considered, the matrix A models the
energetic degradation undergone by protons or H atoms
through collisions with neutrals. The vector B, referred to as
the forcing term, is present only if angular redistributions are
taken into account. It models the coupling between downward
and upward fluxes. Assuming the neutral densities and the
magnetic mirroring term constant within two consecutive
levels of altitude, the elements of the matrix A and the
B are constant within this altitude layer.

The second stage of the numerical process is the most
computer-intensive part of the overall computation. It

. PO H hic
involves retrieving the vector @ at each level of altitude. This

vantae

vCCLOT

entails the computation of many matrix exponentials and/or
related matrix functions. Indeed, the analytic solution of (9) is

D(s) = exp((s—sp).A). (5, +A".B)-A""B  (10)
where @ is the initial condition of the differential system.
Note that the calculations are performed in two phases. First,
from the top to the bottom of the atmosphere, for the
downward flux. Next, from the bottom to the top, for the
upward flux. For the downward flux, @ is taken as the flux at
the higher level of the altitude layer, W?'nle for the upward flux
it is taken as the flux at the lower altitude level. When the
forcing term B is zero, the differential system becomes
homogeneous and the solution reduces to

D(s) = exp((s—sp).A). D (11

Matrix exponentials have received considerable attention.
Although the problem of computing a matrix exponential is
easy to state, numerous difficulties spring up in practice. These
difficulties are exacerbated by such circumstances as largeness,
stiffness, and accuracy. The renowned survey of Moler and Van
Loan [1978] gives a stimulating insight into the problems
encountered. In our case the matrix is large and sparse. The
exponential of a matrix is full even if the matrix is sparse. The
size of A is (nbg.nb,, nb nbu) where nbg is the number of
levels on the energy grld and nb is the number of levels on
the pitch angle grid. In common s1tuat10ns, nbyg, is equal to 200
and nb,, is equal to 20. Hence the order of the matrix A is the
product nbg.nb, > 4000. A full storage of a double precision
matrix that large would necessitate 122 MB. Moreover, the
matrix A, modeling mainly energetic degradation, has
negative eigenvalues with a high ratio between the highest and
the smallest. Consequently, the differential system is stiff, and
this imposes very small step sizes when (9) is directly
integrated with a general-purpose differential solver. In
addition, the norm of A increases significantly as the altitude
decreases, and so the computation of the matrix exponential
becomes very ill conditioned. As a result of these concomitant
circumstances, most of the classical matrix exponential
algorithms are either unsatisfactory or practically unusable in
our context.

We shall now outline a successful approach that overcomes
these difficulties. It relies upon the key observation that one is
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not really interested in the matrix exponential operator as
such. Rather, one is interested in its action on an operand
vector. With this guiding principle in mind, very efficient and
versatile implementations addressing both the homogeneous

and inhomogeneous cases have been described by Sidje [1994,
1997] in accordance with Gallopoulos and Saad [1992]. To

begin with, a reformulation is done to aveid the matrix inverse

appearing in (10). It can be shown that the explicit solution of
(9) satisfies

D(s+h) = h.ERA). (A.O()+B)+D(s) (12)

where E(x) = (exp(x)-1)/x = z xk I(k+1)!.
k=0

Wnrthv of note is the fact that the matrix acti __“11
the right-hand side becomes h.A. Hence h can be selected
small enough to cope with matrices of high norm arising at
low altitudes. The quantity & is a step size, and it is selected
automatically within the algorithm. This selection is done in
conjunction with error estimations ensuring that the desired
accuracy is achieved. In a nutshell, we employ a. discrete
subdivision s, >s5; > > Spe1 =S of [s,sp] for the
downward fluxes and s, <5, <** < s5,,; = s of [s,5] for the
upward fluxes. If we let h; = s, , - 5;, the solution is retrieved
with the following step-by-step integration scheme:

{ D(sp) = @,

involved in

(I)(sk+1) = (I)(Sk +hk)
= oo o)=Bse (13)
D (5541) = hy E(hLA) . (A. D () +B)+D(sy)

It is clear that the crux of the problem is a matrix function
operation of the form W = &(hM).Y which must be
performed for several values of h and V. The vector W is
approximated with a Krylov subspace projection technique.
The keystone of this projection approach is to approximate W
by an element of the Krylov subspace defined as
Kq =span{V, (hA).V, (hA)2V, ..., (hA)a1.V} where q, the
dimension of K, can be chosen considerably small (e.g.,
q=10) compared to nbg.nb , the order of A. The original
large problem is converted into a weak form, that is a small
similar problem of size (q,q), involving the restriction of the
operator A onto the Krylov subspace. In this way it becomes
possible to handle the weak form with classical methods, such
as the irreducible Pade method used in this study. The interested
reader may find more details by Sidje [1997].

A remarkable facet of this projection technique is that, on
the whole, the matrix A interacts only via matrix-vector
products. Hence the technique is a “matrix-free’” technique. It is
independent of the matrix data-storage, and it allows
incorporating high-efficient matrix-vector products with
respect to the structure, the sparsity pattern, and the features of
the matrix. Our matrix has a special sparsity pattern. It is a
sparse lower block-bidiagonal matrix. Each bloc is associated
with a given level of energy and describes the half-angle grid
(down/up) for both charge-states. It is lower block-diagonal
because fluxes of energy E; are only connected to fluxes of
energy E, ;. Greater performance can be achieved by holding
the matrix into a compact format and designing a fine-tuned
matrix multiplication routine tailored for this special structure.

When no angular redistributions are considered, (9) is
solved at several altitude levels from the top to the bottom of
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the atmosphere. The boundary condition is the downward flux
at the adjacent higher-altitude level. At the starting level of
altitude (the top of the atmosphere), the incident downward
flux is assumed to be a pure proton beam, precipitating
between 800 and 600 km. Observations indicate that the
incident downward flux is isotropic and is often very close to
being a Maxwellian [Basu et al., 1987; Strickland et al.,
1993]. Its characteristic energy is between a few keV and
several tens of keV; its typical energy flux ranges from 0.5 to
1 erg cm2 s°1. When angular redistributions are considered,
upward fluxes are generated inducing back (and forth)
computation in the simulated atmosphere.

A code based on this solution has been developed. Given
the incident downward proton flux at the top of the atmosphere
and a neutral model, it determines the proton and H atom fluxes
on a grid of altitude, energy and pitch angle. In the next
section 4, several validations are proposed using results
provided by this code.

4. Validation

In order to validate our code, comparisons with another
model as well as with observations are presented in this
section. For the model comparison, we proceed under the same
assumptions as those used in the reference model especially
concerning the angular redistribution. Therefore the magnetic
mirror effect is neglected, and the forward-scattering
approximation is assumed for the discussion in section 4. All
interest is focused on the energy degradation and on the
validation of our model.

4,1 Comparison With Another Model

Different models based on the solution of the proton
transport equations but without angular redistributions have
been developed [Jasperse and Basu, 1982; Basu et al., 1990,
1993]. The most recent results are those of Strickland et al.
[1993] and were obtained from the model of Basu et al. [1993].
They are taken as reference in order to validate our code. In
addition to the assumptions concerning the angular
redistributions we consider the same inputs, that is, the same
atmosphere model obtained from MSIS 86, the same set of
cross sections [Basu et al., 1987}, and the same incident
proton flux, that is a Maxwellian distribution of characteristic
energy E, and of energy flux Q, equal to 1/e erg cm2s°1.
Moreover, the inner parameters concerning the boundary
values of the altitude and energy grids are taken similarly
[Strickland et al., 1993]: The top of the atmosphere is taken to
be equal to 600 km, the bottom is taken to be equal to 90 km,
and the energy grid ranges from 1 to 105 keV. Both altitude
and energy grids are chosen unevenly spaced with 82 and 200
levels, respectively. The u grid is chosen uniform with 20
levels.

For both models the fluxes of protons and H atoms
integrated in angle are presented versus energy and for different
altitude levels in Figure 2. The characteristic energy E,, is equal
to 8 keV. The two sets of results are very similar. Such a good
agreement allows us to validate not only our code but also our
solution model, at least above 1keV. Indeed, the results of
Strickland et al. [1993] were obtained from a model in which
energy losses are considered as discrete: The energetic
redistribution appears in the collision term, that is, in the
right side of (3). Unlike this approach, our model assumes the
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Figure 2. Comparison of proton fluxes (top) and H atom
(bottom) as a function of energy, for different values of the
altitudes. These fluxes are integrated in angle. The incident
flux is assumed to be isotropic; it is given, in energy, by a
Maxwellian distribution centered in 8 keV and with an energy
flux equal to 1 ergcm2s!. The results provided by
Strickland et al. [1993] are plotted in solid lines. Ours are
shown with dotted curves. As we can see the two sets of results
agree remarkably well.

continuous slowing down degradation of the particles: The
energy redistributions are taken into consideration through
dissipative forces. The fluxes are.then obtained from two
models based on totally different premises; their agreement
allows us to validate our code but also and above all our model
for energies above 1 keV.

A comparison of the electron production for three different
values of the characteristic energy of the incident proton flux
is presented on Figure 3. The electrons are produced by
ionization of ambient neutrals or by stripping, that is,
ionization of energetic H atoms:

Prion(s) =21y ng(s) fl du. [ dE.{ o (E).@p (s, E. 1)
o

HoWH(E)+ 0 (E)) @ (s, B w)] (14)

The higher the characteristic energy, the greater the depth
of the atmosphere that the beam has to cross to be entirely
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Figure 3. Comparison of electron production profiles in
altitude, for incident fluxes given by isotropic 4-, 8-, and 20-
keV Maxwellian distributions of energy flux equal to
1 erg cm'2s°!l. The results provided by Strickland et al.
[1993] are plotted in solid lines. Ours are shown with dotted
curves. Here also, the two sets of results are in accordance.

degraded. In other words, the altitude of the production peak
decreases as the energy E increases.

Like the particle fluxes, the electron production profiles
reported by Strickland et al. [1993] and those obtained from
our model are very similar, which corroborates the validity of
our model.

4.2 Energy Conservation

Another validation of our model lies in the check of the
energy conservation. The incident energy flux Q, at the top of
the atmosphere, weighted by the attenuation coefficient €
[Basu et al., 1990], has to be equal to the total energy Q,
deposited in the atmosphere by energetic particles interacting
with ambient neutrals. No particle exits the studied region.
Since we neglect angular redistribution in the present section,
no upward flux is generated and the lower altitude level is taken
small enough to neglect the particle and energy fluxes below.

The energy deposition rate in eV cm3s! can be
determined at a given altitude s by
= ([ du. . [aE°
n(s) 2%% na(s). [ du.du jo
x 2 2 Lj‘y(E',ll'—>IJ)~¢'y(S:E':l1') (15)
y=P.H j
where j represents the ionization, excitation, elastic

scattering, or charge-changing reactions.
Recall that the forward-scattering approximation is applied
here, so that (15) can be simplified as

n(s)=2my, na(s).jdy. j(:{iE
o

X z Z Ly, (E'). @y (s E', jt) (16)

y=P,H j

It has to be underlined that although a loss function is
introduced, no continuity assumption is made on the energetic
degradation in relations (15) and (16). The same relations are
used to determine the energy deposition rate when the discrete
nature of the energy loss is under consideration in the model.
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The energy grid ranges from a lower energy E,; to a higher
energy E, .. The latter is chosen in such a way that the
incident flux can be neglected above that threshold. However,
the former is usually not equal to zero: the CSD approximation
applied in our solution becomes invalid at low energies.
Therefore the energy deposited at an energy lower than E, ; is
not included in (16). The associated energy deposition rate
Q,,in can be defined as the energy flux variation in altitude at

min:
0

—F(s,E,;,) where
ds

0
F(s,E,;, ) =27 L |t} it Eppin. AE .Y, @y (5, Eppis )(17)
y=P,H

The pitch angle has negative values when it is relative to the
downward flux.

The difficulty in (17) lies in the choice of the energy step
AE, ... An overestimation of this step is obtained for AE

min =
E,,, So the energy E, . is chosen small enough to obtain a

‘min
negligible value for Q, .. In practice, E,; is taken between
0.1 and 1 keV.
So with such appropriate choices for the energies E,,, and

E, . the energy deposition rate 71(s) defined by (16) can be
determined by

ns)=2ny na(s).jdp.jEEw dE"
a min

x Z z Liyy(E'). @y (s E', 1)

y=P.H j

(18)

The total energy deposition rate Q, in the atmosphere
(eV cm? s°1) is defined by

Zmax
Q.= n(s).ds (19)
Zmin
where z,,;, and z,,, are the lowest and highest altitude levels,
respectively.

The check of the conservation of energy reduces to showing
that the incident energy flux £Q, and the total energy
deposition rate Q, are equal. As @, is proportional to &, the
energy conservation check does not depend on the attenuation
coefficient. Taking a sufficient number of levels on the
altitude, energy and angle grids, the solutions of the transport
equations fulfill the energy conservation with a margin of a
discrepancy less than 3%. Furthermore, this validation shows
that the CSD approximation is valid even for relatively low
energies, of a few hundreds of eV.

It has to be noted that the energy conservation applied here
is based on physical considerations: The energy deposition
rate depends on cross sections and loss functions for the
different collisional processes. Basu et al. [1990] propose
another form to evaluate the energy deposition rate:

d

0 Enax 9
nB(s)=—2nI u.du.J E.dE.Z z¢>y(s,E,u) (20)
-1 Emin s
y=P,H
This relation enables us to estimate the energy deposition
directly from the flux: The energy deposited at each altitude
layer is equal to the difference of the inward and the outward
energy fluxes. This energy conservation check tests merely
the numerical integration scheme, however, and provides a
much weaker test than using (18) and (19) to compare with the
incident energy flux.
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By comparing with another model and by checking the
conservation of energy, the proton transport code has been
validated theoretically. At this step of the study a comparison
of the proton code with observations seems now to be
essential.

4.3 Comparison With Observations

The majority of physical quantities perturbed during proton
precipitations, such as electron density and emission
intensities, can be determined from particle fluxes. Therefore
the most effective comparison with observations deals with
proton and H atom fluxes. We present modeled fluxes to
compare to proton and H atom flux data measured aboard a
rocket.

The vehicle Proton I was launched from Anddya, Norway,
located at 69°18’N and 16°01’E. The flight occurred on
February 13, 1972, at 0024 LT during little perturbed
conditions: the magnetic index Ap was 22 and the Sun index
f10.7 was 126.3. The rocket reached an altitude of 224 km.
During the flight, proton and H atom fluxes were measured at
different altitude levels and for different energy and pitch angle
ranges. The data used here concern particles of high energy
greater than 30 keV. Measurements were done at lower
energies thanks to another detector, but the uncertainties on
these data are relatively high (F.S6raas, personal
communication, 1996). A more comprehensive description of
the flight, the pay load, and the measurements is provided in
Soraas et al. [1974, 1994].

The flight lasted almost 7 min, during which the Hp
emission measured from ground decreased slowly. The rocket
was launched almost perpendicular to the magnetic field lines
(azimuth of 340°). However, the aurora appeared as a nearly
homogeneous glow despite some faint additional structures,
and no marked variations occurred during the flight: in first
approximation the precipitation can be assumed to be
spatially stable and temporally constant, at least during the
ascent or the descent part of the flight.

Under these assumptions it is possible to deduce the
incident flux from a measurement at apogee. At apogee the
vehicle was at an altitude of 224 km and the proton beam had
not yet undergone significant energy losses, at least above
1 keV. The proton beam at this altitude is at charge
equilibrium. Therefore the proton flux incident at an altitude of
800 km upon the ionosphere is taken to be equal to the flux of
protons and H atoms measured at 224 km for energies greater
than 30 keV. From Séraas el al. [1974] this downward flux can
be assumed to be isotropic and its distribution in energy can be
approximated by the following functions:

dE)=8x 10" E2
W(E)=2.2x 1017 E-6:67

with 1< E < 100 keV
with £ > 100 keV

(21a)
(21b)

with the particle energy E in keV and the particle flux @ in
cm2 sl kev-lsrl

Nevertheless we should point out that the flux which has
truly precipitated at 800 km must have been higher. Indeed, at
high altitude the incident proton beam is spread by the first
path of the neutralized protons. This leads to an attenuation of
the particle flux at the center of the beam [Iglesias and
Vondrak, 1974]. In the proton code this attenuation is
neglected since it is already taken into account when using the
measured flux as a.boundary condition for the incident flux at
the top of the atmosphere.
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Figure 4. Comparison of energetic distributions of (H*+H)
fluxes at different altitudes. Proton I rocket data [Soraas et al.,
1974] are represented with symbols and are valid for pitch
angles between 152 and 165°. The asterisks, pluses, circles,
and crosses refer to the altitude ranges 118.4-119.9 km,
112.8-114.2 km, 108.5-109.9 km and 102.5-104.0 km,
respectively. The results obtained from the transport code are
illustrated with solid lines and the altitudes associated are
directly given on the figure. The incident flux taken equal to
the measured flux at 220 km [Soraas et al., 1974] is plotted
with the dashed line.

We use the proton code to compare the predicted fluxes at
lower altitudes with Proton I rocket data. The neutral model
from 90 to 800 km is deduced from MSIS 90 for the day of the
experiment. The cross-section set is from Basu et al. [1987].
The incident proton flux is defined by (21a) and (21b). The
energy grid spreads from 30 to 600 keV, following the energy
range of proton and H atom data. The incident particle flux is
negligible for energies greater than 600 keV. It should be
emphasized that incident particles of energies lower than
30keV have no effect on the present results because the
energy degradation is from higher to lower energies.

Particle Flux as a Function of Energy. The
particle flux data obtained during the ascending part of the
flight are represented versus energy with stars on Figure 4 for
different altitude levels. The fluxes provided by the proton
transport code are plotted in solid lines on Figure 4, too.
There is good agreement between measured and calculated
results presented in Figure 4. The small differences can be
explained by the uncertainties in the data as well as in the
input parameters. The observed particle fluxes are known with
an uncertainty of 20% and the cross sections with an
uncertainty of 30%. Moreover, the stability assumed in time
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and in space of the incident flux is only an approximation:
This represents another possible source for the discrepancy,
but it is difficult to evaluate.

The most noticeable disagreement appears at low altitude.
The measured flux between 102.5 and 104 km is framed by the
calculated fluxes at 101.3 and 103.4 km. This altitude region
is located below the energy deposition altitude at about
110 km: The particle flux decreases very fast since the neutral
density is high. We checked that the uncertainty on the neutral
model as well as on the measured altitude known to an accuracy
of 1 km can easily explain the discrepancy.

For an incident flux based on observations at 224 km and
for energies higher than 30 keV, the agreement between
measured and calculated energy distributions of particle fluxes
is rather good. In spite of all the uncertainties already pointed
out, this comparison is a first step toward a satisfying
validation of the modeled energetic degradation, at least above
30 keV, in our proton transport code. For further validation
we need more rocket observations. At the present, to our
knowledge, only this experiment fits the requirements for such
a comparison.

5. Conclusion

The solution of transport equations allows the most
complete study of the interaction of a proton beam with the
atmosphere. The approach described here includes processes
neglected until now, such as angular redistribution due to
collisional interaction as well as magnetic mirroring. The red
shift on Doppler profiles of H emissions attests of upward flux
generated from proton precipitation.

In section 2, the study of energy losses of protons and H
atoms has led to assume that these particles are slowed down in
the atmosphere continuously. Therefore it has been possible
to introduce dissipative forces depending on cross sections and
energy losses to describe the energy degradation due to
collisions with neutrals. The solution is then based on the
general transport equation instead of on a restricted equation
valid only for conservative forces and used until now in the
literature of proton transport. Our solution allows the
introduction of angular redistribution without seriously
complicating the solution.

A code has been developed based on this approach. The
results obtained were compared with those from another model
[Basu et al., 1993; Strickland et al., 1993]. For consistency we
considered the same assumptions used in this model,
especially no angular redistributions. Basu’s code is based on
another solution taking into account the discrete nature of the
collision energy losses. Unlike them, our solution used the
CSD approximation. Therefore the very good agreement
between both models on the particle fluxes and electron
production leads not only to the validation of our code but also
justifies the CSD approximation for energies above 1 keV.

Another validation based on physical consideration
concerning the energy conservation is discussed. Energy loss
in the code is less than 3% and allows us to show that the CSD
approximation is still accurate down to a few hundreds of eV.

A comparison with ProtonI rocket data based on energy
distribution of particle fluxes validated the energetic
degradation and the continuous slowing down approximation
at high energies above 30 keV.

In the present paper the solution of our model has been
presented and the validation of our solution, especially the
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energetic degradation, has been discussed on theoretical as
well as on experimental backgrounds. It now . appears
interesting to study the influence of angular redistribution
sources whose effects have been underlined by ground-based
observations of H emission Doppler profiles. The collisional
angular redistributions could be important at low energies,
mainly below 1keV, and the magnetic mirroring effect could
have a significant influence at high altitudes. However,
ground-based observations cannot allow to identify the
processes acting predominently on the proton beam. Since our
code can include these sources, a theoretical analysis can be
undertaken to study the effects of these processes on particle
fluxes and their influence on the Doppler profile of H
emissions. These results are the subject of a forthcoming

paper.

Appendix A: The Magnetic Force

If the third term of (3) is applied to the Lorentz force, it
takes the following form:

1

- V,((g vAB). f(r.v.0))
=%f@m¢VAwun+%@Amqu@mm (A1)

As the magnetic force is not dissipative, the first term of

(A1) is equal to zero.
As for the second term of (A1), it can be rewritten (A2)

2
-Z; v2f(ev,0) (v A B)'V"(Ilfj+_\,£12— (vAB). Vv[v;f(r, v, t)J

But,
3 3
1 d (1
AV | I—=|= e.—(—) with v=") v;.e;
v(v2) E i avi v2 ;; i
=_2%
v4

Then, as the Lorentz force is perpendicular to the vector v,
the first term of (A2) is equal to zero.

Aby the definition and the characteristics of the particle flux
@ [Siamnes and Rees, 1983],

. v
with u=—3=u3

Vv(%f(r, v t)] =V, (9(s.E.1)

\4
and
3
VV = Zei.
i=1 ¢
3
oE 9 du; 9 .
_Zlei'a_viﬁ Z_ la—‘)l-g \Nl[hll—';
j=1 J

Therefore the second term of (A2) takes the following form:
3 =V 2

m—— —
3
aE j=1 14 auj

%wAmw. . ®(s, E, 1)
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+viz(v/\B)2‘ej —@(s,E, 11)
j=1 j
=2 (vAB). e @(s,E, 11) with e, parallel to B
v

Appendix B: From the Continuous Energy Loss
to the Discrete Energy Loss in the Transport
Equation

In the set of transport equations (8a) and (8b), the energy
degradation undergone by precipitating particles y (P or H)
during a collision j with a neutral species o is

[jLa (B — ). @y (s, E, i) dpt

= = ng(s JBE( Ly (E i — p). @, (s,Eu)du")

(because the function L, cb is continuous on its definition
domain and has a pamal denvauve in g’ continuous on this
same set)

AE+W, 1 — ). &(s,E+W, 1)
s)j[ W
(Euﬂy @E#qﬂu

(because the energy degradation is assumed to be continuous
(CSD approximation): W (( E, with W= Wg,,, the energy
loss undergone by the particle 7)

= —ng(s)
joayE+W)§¢]zzy(E+W#_)#) (s, E+ W, ). d
|

+ng(s). IG“Y E). C({,Y(Eu—-)u) (s E. ). dpt

-1

(from the definition relation (7) of L, and in assuming that the
energy loss varies slowly versus the energy of the particle: W
=w (E, u'—>u) = w (E+W, u'—u). This is checked by the low
and continuous variation of the relative energy loss plotted on
Figure 1)

The following relation introduces the differential cross-
section

04y (E', W= E, 1)
=04,y (E). (B E+ Wiy ). Chy ("> 1) (B1)

with 8, the dirac function. The energy degradation term in (8a)
and (8b) can then be rewritten as

_— J'La (Bt > 1) (s, E, ). di
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= T hy (s )

1
X j Iﬁé,y(E'»#'—) E, p).
>E -1

@, (s, E',w). dE". du’

f%yE#*u) y(s.E.p).dp (B2)

-1

+ng(s). b ( 2

The first term on the right side of (B2) describes the
production of particles of type (E,u) from particles y of type
(E’,1t’) of higher energy. The second term is equal to the second
term (or the third) on the right side of (8a) and (8b). Therefore
the loss term of particles y of type (E,u) is the only term which
does not disappear in the right side of (8a) and (8b). Finally,
the transport equations (8a) and (8b) on which is based our
proton transport code can be rewritten as follows:

0 du o
pe ((DP (s E u))+u-f Em (<1>P(s, E, u))

== na(s). o p(E). Bp(s.E, 1)
+ 2 2 Mg ()

a k=exci,ioni,scat

1
x [ [obp(Ew— Eu). @p(s E', ). dE". dp
>E -1

+ 2 ng(s)

J' jo (E', 1= E,p). @y (s, E', 1) dE". dy’  (B3a)
>E -1

aas (Puls. E. 1))

==Y na(s) 04, 4(E). Ppy(s. E. 1)

+ 2 2 1y (5)

o k=exci,ioni,scat

1
xj fo-f,‘,,H(E’,u'—>E,u).(DH(s,E’,u’).dE’.du’
>E -1

+ 2 ng(s)

j J'o E',j'—E,u). ®p(s E', 1).dE" du’  (B3b)
>E -1

Equations (B3a) and (B3b) represent the classical
conservative transport equation used in all the proton
transport solution so far [Jasperse and Basu, 1982; Basu et al.,
1990, 1993].
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