Lecture 16: The Solar Resource

Black body (BB) radiation

Spectral power density emitted by BB at temperature T: $u(E)dE = \frac{2\pi}{h^3c^2} \frac{E^3dE}{e^{E/kT}-1}$

Spectral photon flux density:

Stefan-Boltzmann Law :

N.B. Energy of a photon.

Solar radiation

Sun radiates like BB at $T_{sun} = 5780$ K, diluted by $f_s = 2.16 \times 10^{-5}$ due to distance from Sun. Solar constant (intensity outside Earth atmosphere) = 1368 Wm⁻²

 $b(E)dE = \frac{2\pi}{h^3 c^2} \frac{E^2 dE}{e^{E/kT} - 1}$

 $I = \int_0^\infty u(E) dE = \sigma T^4$

 $E / eV = 1240 / (\lambda/nm)$

Solar radiation attenuated by the Earth's atmosphere through: absorption (by CO₂ and H₂O in IR), scattering (15% of radiation is "diffuse") and reflection (cloud and ice). Standard solar spectrum is "Air Mass 1.5" normalised to 1000 W m⁻². Irradiance depends on latitude, climate, seasonal and daily cycles.

