Lecture 19: Thermodynamic model of photovoltaic energy conversion

Ideal photovoltaic solar energy converter:

- Absorbs all photons with E > E_q
- Emits like black body with chemical potential $\Delta \mu > 0$
- Every net absorbed photon \rightarrow one electron in external circuit (QE = 1)
- Delivers power through flux of photogenerated electrons with $\Delta \mu > 0$ (c.f. W = μdN)

Analysis of ideal PV converter:

Emitted photon flux density by black body with $\Delta\mu > 0$: $b(E,T,\Delta\mu) \approx e^{\Delta\mu/kT}b(E,T,0)$

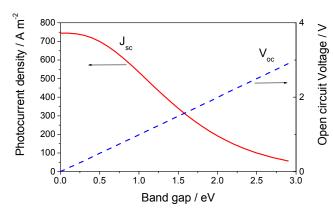
Conservation of particle flux: $j(E) = Xf_s b(E, T_{sun}) + (1 - Xf_s)b(E, T_p) - e^{\Delta \mu / kT}b(E, T_p)$

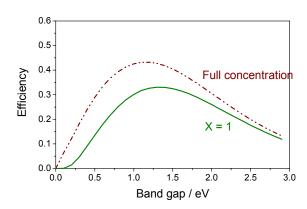
Net current density produced J:

$$\frac{1}{e}J = \int_{E_g}^{\infty} j(E)dE = Xf_s \int_{E_g}^{\infty} b(E, T_{sun})dE + (1 - Xf_s) \int_{E_g}^{\infty} b(E, T_p)dE - \int_{E_g}^{\infty} e^{\Delta\mu/kT} b(E, T_p)dE$$

$$J = J_{SC} - J_0 \left(e^{eV/kT} - 1\right)$$

where output voltage is: $V = \Delta \mu / e$


Power produced: $P = \frac{J}{e} \Delta \mu = JV$


Power conversion efficiency: $\eta = \frac{JV}{Xf_s\sigma T_{sun}^4}$

Quantum efficiency: $QE(E) = \frac{\text{electron flux density collected}}{\text{incident photon flux density}} = \frac{j(E)}{Xf_sb(E, T_{sun})}$

Performance of ideal solar photovoltaic converter:

For a given spectrum and intensity, performance is maximised at some optimum E_g For unconcentrated blackbody sun (X = 1) η has maximum of 31% at E_g = 1.4 eV Low efficiency results from poor match of broad solar spectrum to single energy E_g

