
Answers to Problems for Chapter 1

Q1

(i) Winter pole, 25km for the stratosphere but Summer pole, 80km for the
mesosphere. The lower stratosphere is also very cold year round at the
equator, and this reflects the deep penetration of convective motions
and the tendency to follow a moist adiabatic structure at low latitudes
(this will be discussed in Chapter 3).

(ii) Summer pole near the stratopause for the stratosphere, but Winter
pole for the mesosphere (particularly warm right at the stratopause
but hot throughout the depth of the mesosphere). This surprising
feature, and the cold Summer pole in (i), reflect a planetary circulation
extending from the Summer to the Winter poles. In the ascending
branch (Summer pole), air cools by doing work of expansion against
its surroundings, hence the low temperature there. Likewise, in the
descending branch, air is compressed and warms up, hence the high
temperature there.

(iii) For both stratosphere and mesosphere, the strongest westerly winds
(i.e., from west to east) are found in the Winter Hemisphere (the “polar
vortex” for the stratosphere, and much closer to the equator for the
mesosphere –near 30◦ of latitude).

Q2 This is because of the descending motion associated with the Hadley cell
in the sub-tropics. This brings dry air from high levels to the surface which
prevents any cloud and rain formation.

Q3

(i) (a) The mass mixing ratio of ozone (rO3) is the ratio of the mass of ozone
in a sample of air to the mass of dry air in the sample, rO3 = mO3/md.
The density of ozone is ρO3 = mO3/V where V is the volume of the
sample. We can, as far as pressures are concerned, neglect the presence
of water vapour and ozone in the stratosphere and treat the sample as
“dry air”, i.e., Po = Pd +PO3 + e ≈ Pd. Hence Po = ρdRdTo where ρd is
the density of dry air. From ρO3 = rO3ρd, we get ρO3 = rO3Po/RdTo ≈
4× 10−7kgm−3. (b) Using the ideal gas law, PO3 = ρO3RO3To in which
RO3 = kB/µO3 is the gas constant for ozone. To obtain the latter,

use Rd = kB/µd so that RO3 = Rdµd/µO3 ≈ 287 × (0.8×28+0.2×32)
48

≈
172.2JK−1kg−1. This yields PO3 ≈ 0.015Pa.
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(ii) At a given temperature T and volume V , one has e/Pd = Nv/Nd using
the ideal gas law and Nv/Nd = 10/1000 = 0.01. Hence water vapour
molecules account for Nv/(Nd+Nv) = 0.01/(1+0.01) = 0.0099% ≈ 1%
of air molecules in the sample. Rewriting 1% = 10−2 = 104 × 10−6 =
104 ppm, we see that this fraction is 104/400 = 25 times that of CO2.

Q4

(i) The new airmass weights 2kg and contains 5+10 = 15g of water vapour.
Hence q3 = 15/2 = 7.5kgm−3. More generally, if x = m1/m2 (the ratio
of the two masses of gas), one has q3 = q1/(1 + 1/x) + q2/(1 + x) =
(xq1 + q2)/(1 + x).

(ii) Specific humidity is an intensive variable since in the case in which
q1 = q2, one obtains after mixing q3 = q1 = q2 (independently of x)
rather than q3 = q1 + q2. In other words it is not proportional to the
mass of the sample.

Q5

(i) Using the hydrostatic equation ∂P/∂z = −ρg in which ρ is density.
For an isothermal atmosphere, the ideal gas law reads P = ρ(kB/m)To
so that ∂P/∂z = −Pmg/kBTo. This proves p ∝ e−z/Hs with Hs =
kBTo/mg as required.

(ii) One needs to estimate first the value of gravity at the planet’s surface,
which can be done using Newton’s aw of gravitation, g ≈ GM/R2 in
which M is the planet’s mass and R its radius. Then it is just a matter
of plugging in the numbers. One gets: g = 8.87(V ), 9.81(E), 3.71(M), 24.8(J)ms−2

and the resulting scale heights are, 16(V ), 8.2(E), 12.7(M), 20.6(J)km.

Q6 Start from α = (Vg + Vl + Vi)/(md + mv + ml + mi) (in which Vg is
the volume occupied by the gas phase, Vl, Vi by the liquid and ice phases,
respectively) factorize by md to obtain α = (Vg/md+Vl/md+Vi/md)/(1+rt)
in which rt = (mv + ml + mi)/md is the total mass mixing ratio of water
substance. Acknowledging that αd = Vg/md, this can be rewritten as, α =
(αd + Vl/md + Vi/md)/(1 + rt). Introducing αl = Vl/ml and αi = Vi/mi,
one gets, α = αd(1 + rlαl/αd + riαi/αd)/(1 + rt). Both rl and ri are very
small compared to unity, as are αl/αd and αi/αd, so αd ≈ αd/(1 + rt). Since
1 + rt = 1/(1− qt), the result follows.

Q7 Higher pressure is found on the western than on the eastern side of
the Rockies. The atmosphere is thus “pushing” the Rockies towards the
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east. From Newton’s 3rd law, the Rockies must thus “push” the atmosphere
towards the west. The Rockies thus contribute to a loss of angular momentum
(same sign as the loss due to surface friction). NB: The pressure pattern is
somewhat easier to see for the Andes on the ERA website. This probably
reflects the Taylor column effect partly at work in the Rockies (the wind
going around the mountain), but less so over the Andes because they occupy
a broader range of latitudes (air parcels have “nowhere to go” but over the
mountain).

Q8 Assuming u ≈ 0 at the equator, the angular momentum of the ring as it is
about to go upward is L = ΩR2. Assuming L is conserved all the way during
the ascent and the poleward motion, we have, ΩR2 = R cosφ(ΩR cosφ +
u). This provides a formula for u as a function of latitude φ, namely, u =
ΩR sin2 φ/ cosφ. At 30◦N this provides, u ≈ 134ms−1! Such velocities are
not observed because the ring breaks up in waves (the storms) before reaching
this value

Q9 The incoming solar radiation is estimated at 340.2Wm−2, cloud absorp-
tion in the short wave at 5Wm−2, and atmospheric absorption in the short
wave at 75Wm−2. Thus the fraction absorbed by the atmosphere and cloud is
(75+5)/340.2 = 0.24. Another way to estimate this heating is to look at the
convergence between the net downward at the top (340.2 − 100 = 240.2)
and that at the surface (165 − 23 = 142), leading to an absorption of
240.2 − 142 = 98Wm−2 and a fraction 98/340.2 = 0.29. This is 18Wm−2

larger than the 75 + 5 = 80Wm−2 quoted in the text (I suspect that this is
because they have chosen to close the total heat budget rather than each sep-
arate vertical component). In any case, the fraction absorbed is not entirely
negligible but small enough for a zero order view.
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