
Solution to Chapter 2’s problems

Q1. For the southward facing side, the angle δ between the normal to the
slope and the beam is δ = θS − α. The intensity reaching the slope is then
I cos δ = I cos(α−θS) (notice that it makes sense, no light reaching the slope
when it is parallel to the slope, i.e., when θS = π/2− α). For the northward
facing side, δ = α + θS so that the ratio sought is cos(α − θS)/ cos(α + θS).
This is 1.53 for θS = 30◦ and 4.4 for θS = 60◦.

Q2. The irradiance and intensity are related through F =
∫
I cos θdΩ. Here

we consider the case of zero zenith angle so θ = 0. The rays reaching the
TOA do not originate equally from all directions. Rather they originate from
a “radiation pencil” whose solid angle is δΩ (Fig. 1). The fraction of the
hemisphere of solid angle (i.e., “the sky”) that is occupied by the Sun is the
same as the fraction of the area of the hemisphere of radius d, centered on
Earth, occupied by the Sun: δΩ/4π = πR2

s/(4πd
2) = 6.84×10−5sr−1. Hence,

I ≈ F/δΩ = 2× 107Wm−2sr−1.

NB: Alternatively, you could work out the solid angle from the definition
δΩ =

∫ θ
0

sin θdθdφ in which θ now measures the angle between the vertical
and the Sun’s surface at its equator, and φ is the azimuthal angle (from 0
to 2π). From the geometry of the problem, sin θ = Rs/

√
R2
s + d2 ≈ Rs/d so

that, approximating the integral as half the area of the rectangle with height
sin θ and width θ , we get δΩ = 2π ×Rs/d× 1

2
Rs/d = π(Rs/d)2, as before.

Q3. From Beer’s law, the ratio of radiation intensity is e−βλ
∫ s
0 ρads. (i) We

have
∫ s
0
ρads = 1kgm−2 so the ratio is e−0.01×1 = 0.99, i.e., very little absorp-

tion. (ii) Just rearrange Beer’s law to get
∫ s
0
ρads = ln 2/βλ = 69.3kgm−2.

Q4. (i) From the definition of optical depth, τ(z) =
∫ +∞
z

ρqkλdz with
kλ = αλ = 0.01m2kg−1 (from the previous question). Using the hydrostatic
equation, dP/dz = −ρg, and noticing that kλ and q are constants, we get,

τ(z) = qkλ
∫ Ps
0
dP/g = qkλP/g. (ii) To reach an optical depth of unity, P

must be equal to g/(qkλ) = 9.81/(0.01× 10−3) = 9.81.105Pa. This is about
ten times larger than Ps so cannot be reached. The optical depth increases
with pressure, with maximum value at the surface, τ(z = 0) = qkλPs/g = 0.1.

Q5. Write ρ = ρse
−z/Hs in which Hs is the scale height and ρs the surface
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Figure 1: Approximate calculation of solid angle for Q2.

density. From the definition of optical depth,

τλ(z) ≡
∫ +∞

z

ρqakλdz = qakλρsHse
−z/Hs (1)

assuming uniform mixing ratio qa. From the notes, Qλ ∝ ρF ↓λ ∝ ρe−τ(z).
Hence the heating rate is maximum when

dQλ

dz
= 0 i.e.,

dρ

dz
e−τ = ρ

dτ

dz
e−τ (2)

This can be rewritten as 1 = qakλρsHse
−z/Hs = τ , hence the result.

Q6. Simply divide the previous answer by ρ to express the heating rate in
Wkg−1 rather than in Wm−3,

Qλ/ρ ∝ e−τλ(z) (3)

which is indeed maximum at the top-of-the-atmosphere. This simply reflects
the fact that, per unit mass, there will be more absorption of radiation at
upper levels (more intensity of radiation incoming) than at low levels (not
much radiation left to absorb).

Q7. (i) Denote by Io the intensity emitted by the surface, I1 that impinging
at the height where τ = 0.2 and I2 the intensity at the height where τ = 4.
What we are asked to compute is (I1 − I2)/Io. Using Beer’s law (or the
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first term on the right hand side in Schwarzchild equation), this is simply
e−0.2−e−4 = 0.8, i.e., 80 % of the radiation emitted by the surface is absorbed
by this layer. (ii) Denote by Bo the Planck function for the atmosphere and
Earth’s surface at temperature To, i.e., Bo = Bλ(To). The total infrared
radiation is obtained from Schwarzchild equation. At a fixed path distance
s, with so = 0 (the Earth’s surface), we have:

Iλ(s) = Boe
−τ(0,s) +

∫ τ(0,s)

0

Boe
−(τ(0,s)−τ ′)dτ ′ = Bo (4)

This shows that for the special case considered (isothermal atmosphere at
the same temperature as the Earth’s surface), the upward infrared flux is
constant with height. Thus at the TOA, Iλ = Bo. The contribution ∆Iλ to
the OLR from the layer sandwiched between τ(0, s) = 0.2 and τ(0, s) = 4 is
simply,

∆Iλ =

∫ 4

0.2

Boe
−(τ∞−τ ′)dτ ′ = Boe

−τ∞(e4 − e0.2) ≈ 0.36Bo (5)

where we have used τ∞ = 5. The contribution is thus 0.36Bo/Bo = 36 %.

Q8.

(i) The radiative balance is 4πR2σT 4
e = πR2(1−αP )So so Te = ((1− αP )So/4σ)1/4.

(ii) Differentiating the radiative balance with respect to Te, one obtains,
16σT 3

e δTe = −SoδαP where δαP is the change in albedo and δTe
the resulting change in emission temperature. Rearranging, one gets
δTe/Te = δ(1 − αP )/4(1 − αP ). This shows that a 10 % change in
(1 − αP ) leads to a 10/4 = 2.5 % change in emission temperature.
Expressed as δTe/δαP the sensitivity is −91K per unit change in plan-
etary albedo. The negative sign reflects that a more reflective planet
is colder.

(iii) Assuming δTs ≈ δTe where δTs = 0.2K is the change in global surface
temperature, one gets δTs ≈ (δTe/δαP )δαP . Using αP = fαc+(1−f)αs
in which f is the fraction of the Earth’s surface covered by clouds and
αc = 0.8, αs = 0.1, one then obtains, δTs ≈ (δTe/δαP )(αc − αs)δf , or
δf = δTe/[(δTe/δαP )(αc − αs)] = 0.2/(−91 × (0.8 − 0.1)] = −0.003.
The negative sign is consistent with a reduction in cloud cover leading
to a surface warming.

(iv) The question is a bit unclear because it does not specify the wavelength
(shortwave or longwave) of the transmissivity increase. Considering the
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previous questions, I am assuming the shortwave is considered here, and
I am interpreting the increase in transmissivity by 10 % as a decrease in
cloud albedo by 10 %. This corresponds to a change in planetary albedo
of δαP = fδαc = −0.1fαc. To estimate f , use αP = fαc + (1 − f)αs,
leading to f = (αP − αs)/(αc − αs) = 0.2/0.7 = 0.28. As a result,
δαP = −0.1×0.28×0.8 = 0.022. The change in surface temperature is
then, assuming again δTs ≈ δTe = (δTe/δαP )δαP = −91 × (−0.02) =
+2K.

(v) The reason why the observed surface temperature larger than the effec-
tive temperature is the greenhouse effect. The transmittance associated
with solar radiation is larger than the transmittance for thermal radi-
ation. This means that the atmosphere allows solar radiation to heat
the surface but traps thermal radiation emitted by the surface, which
yields further heating of the surface.

(vi) The Earth’s surface cools by evaporation and also because it is warmer
than the air above (thermals). As a result, there must be a net down-
ward radiative flux (surface energy gained) to oppose this cooling if an
equilibrium is to be observed.

Q9. The total energy radiated at the Sun’s surface is 4πr2sunσT
4
sun. At a

distance of 1AU the same total energy is radiated by the Sun, neglecting
the weak absorption of shortwave radiation as it travels through space. So
4πr2sunσT

4
sun = 4πd2So, with d = 1AU . Plugging numbers one finds So =

1362Wm−2. This is indeed close to the observed values displayed in the
figure.

Q10. (i) From Iλ = Iλ,∞e
−τλ sec θ, one gets (Iλ)1/(Iλ)2 = e−τλ(sec θ1−sec θ2). The

answer follows after taking the logarithm and rearranging. (ii) If we make
the assumption that the atmosphere is not changing much in terms of kλ, ρ
and qa between the two solar paths considered, then τλ can be interpreted as
a measure of total optical depth for the atmosphere. Plugging numbers, one
gets τλ = ln 1.12/(sec 40− sec 20) = 0.47.
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