
Answers to Problems for Chapter 3
Q1

(i) Start from the definition of entropy for dry air, yielding ds = cp,ddT/T−
RddP/P . The atmosphere being in hydrostatic balance, αdP/dz = −g
where α is the specific volume. Hence ds = cp,ddT/T + gRddz/(αP ).
Using the ideal gas law, Pα = RdT , this is also, ds = cp,ddT/T+gdz/T .
For the adiabatic case, ds = 0, so cp,ddT + gdz = 0. The result follows.
Numerically, Γd = 9.81/1005 ≈ 9.8K/km.

(ii) Starting from the definition of potential temperature θ = T (Pref/P )Rd/cp,d ,
and differentiating the ln of this expression with respect to z, we
get T

θ
∂θ/∂z = ∂T/∂z − RdT

Pcp,d
∂P/∂z. Using the hydrostatic equation

∂P/∂z = −ρg and the ideal gas law P = ρRdT , this can be rewritten
as, T

θ
∂θ/∂z = ∂T/∂z + g/cp,d. The result follows.

(iii) A dry atmosphere with N2 ∝ ∂θ/∂z < 0 is unstable to vertical dis-
placements. Thus, it might happen that sporadically the lapse is larger
than Γd (i.e., the temperature decreases with height more rapidly than
about 9.8K/km) but the atmosphere would then quickly overturn and
reach Γ = Γd. The opposite case N2 > 0 is stable and associated with
a lapse rate weaker than the dry adiabatic value. In the stratosphere
absorption of ultraviolet radiation from the Sun leads to high entropies
there and a lapse rate even opposite in sign to Γd!

Q2 The parcel undergoes a moist adiabatic ascent over 4km. Its tempera-
ture thus decreases by 4 × 6.5 = 26K. It then experiences a dry adiabatic
compression over 3km and thus an increase in temperature of 3× 10 = 30K.
The parcel is thus warmer by 4K on the plateau than when it started above
the sea.

Q3 (i) At room temperature and pressure the phase diagram of water shows
that only the vapour phase should exist at equilibrium. Thus, if there is no
liquid water in the room at all, thermodynamic equilibrium has been reached.
If however there is liquid water (say someone has just mopped the floor), then
the situation is not in thermodynamic equilibrium: evaporation will occur
until all the liquid water remains in the vapour phase (when that occurs,
thermodynamic equilibrium has been restored). (ii) Not in thermodynamic
equilibrium: the rain will evaporate into the dry air mass.

Q4. At the top-of-the-atmosphere, the equilibrium condition is: σT 4
e = σT 4

2 ,
hence T2 = Te = 255K. For layer 1, equilibrium requires σT 4

2 +σT 4
s = 2σT 4

1 ,
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while for the surface, it reads σT 4
e + σT 4

1 = σT 4
s (you can read these two

equations as simply saying that heating equals cooling). Substracting the
previous two equations lead to σT 4

1 = 2σT 4
e hence T1 = 21/4Te = 303K.

Replacing this value in any of the two equilibrium conditions above then
yield Ts = 31/4Te = 336K.

Q5.

(i) Using a reference pressure Po = 1000hPa, the potential temperatures
are θ1 = 335K (at 700hPa and using T1 = 303K), and θ2 = 331K (at
400hPa and using T2 = 255K), while, at the surface θs = Ts = 336K.
This is clearly an unstable situation, with high entropy air below low
entropy air, from the surface to upper levels.

(ii) Convection carries heat upwards. So the surface temperature should
go down.

(iii) Consideration of the TOA radiative budget leads again to T2 = Te.
Hence T1 = T2 + ∆T and Ts = Te + 2∆T .

(iv) The surface energy balance is σT 4
s + Fs = σT 4

1 + σT 4
e while energy

conservation for layer 2 reads: σT 4
1 +Fc = 2σT 4

2 . Using the expressions
in (iii), we obtain: Fs = σT 4

e [1 + (1 + x)4 − (1 + 2x)4] and Fc =
σT 4

e [2− (1 + x)4].

(v) The pressure difference between the layers is 300hPa which is about
3km thick. For a moist adiabat, the temperature decreases with height
at about 7K/km, hence a plausible choice for ∆T is 3×7 = 21K. This
has a value x = 21/255 = 0.08. (NB: at constant entropy, tempera-
ture always increases with pressure so ∆T , and as a result x, must be
positive). A plot of Fs and Fc as a function of x shows that these are
positive and decrease with increasing x, up to a point where they cross
the zero line. The solution physically requires that convection carries
heat upward so that both Fs and Fc must be positive. This will be
satisfied as long as 0 < x < 0.14 (the zero crossing with the smallest
value of x).

Finally, without convective fluxes, the surface temperature was Ts =
31/4Te. With convective fluxes, Ts = Te(1 + 2x) and so equals the
radiative equilibrum value when x = (31/4 − 1)/2 = 0.158. Thus, over
the range of values for the which is physical (0 < x < 0.14, based
on Fs, Fc > 0) the surface temperature is smaller than the radiative
equilibrium value, as expected from (ii).
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Q6. It is just a matter of finding values for N2, ∆y and µθ. Inspection
of the θ distribution from the ERA40 atlas suggests (at 45◦N) that N2 ≈
(g/285K)20K/400hPa ≈ (g/285)(20/4km) = 1.7 × 10−4s−2. At the same
latitude, following the θ = 285K surface, one gets µθ ≈ 4km/5000km =
8 × 10−4. The latitudinal extent of the storm can be obtained from the
global infrared picture in Chapter 1, typically ∆y = 15◦ of latitude, i.e.,
∆y = 6371× 15× π/180 ≈ 1700km. Plugging those in we get,

KEmax =
N2(∆y)2

8
µθ

2 ≈ 40J/kg (1)

This is consistent with observations, with implied velocities on the order of√
2KEmax = 10m/s. It is remarkable how such a simple view of the storms

seems to work. (NB: This view was pioneered by Prof Eric Eady at Imperial
College in the 1950s and it still provides the basic theoretical understanding
behind the complicated numerical simulations carried out in climate centers
across the world.)

Q7.

(i) Simple harmonic motion at angular frequency N , i.e., z(t) = A cosNt+
B sinNt. From the initial conditions z(0) = 0 and dz/dt(0) = wo,
we get z(t) = (wo sinNt)/N . For the values given, the period of the
motion is 2π/N ≈ 10mn. After 1mn, it reaches a height of 5.6m above
its initial position (and is thus just in the initial ascending part of its
oscillatory trajectory).

(ii) The motion is unstable and of the form z(t) = AeNt + Be−Nt. Using
the initial conditions, we get z(t) = wo(e

Nt− e−Nt)/2N . This provides
z = 6.4m after 1mn.

(iii) In this case the parcel’s equation predicts dwp/dt = 0, and hence that
the parcel will keep rising with the same vertical momentum (the buoy-
ancy force is zero and so there is no upward or downward acceleration
provided by the environment). After one minute the height reached is
10× 10−2 × 60 = 6m.
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Figure 1: Schematic θ profile for the summer (red) and winter (blue) meso-
sphere.

Q8.

(i) The winter hemisphere is nearly isothermal so it has a lapse rate ap-
proximatively equal to 0K/km. The summer hemisphere tempera-
ture profile varies by about 100K between the mesopause and the
stratopause, i.e., a lapse-rate Γ ≈ 100K/40km = 2.5K/km.

(ii) Both lapse rates are weaker than the dry adiabatic lapse rate (the one
to consider here since there is no significant amount of water vapour in
the mesosphere) so the θ profiles are stable and should increase with
height. From the Fig. in Chapter 1, the mesopause and the stratopause
have roughly the same pressure in the winter and summer hemispheres,
which allow to sketch the potential temperature as in Fig. 1 above.

(iii) The Brewer-Dobson circulation requires air to ascend in the summer
hemisphere and descend in the winter hemisphere. This is entirely con-
sistent with the air being heated in the summer hemisphere (absorption
of solar radiation by ozone and oxygen, see Chapter 2) and so increas-
ing its θ as it moves supward (from A to C). Conversely, the circulation
demands descending motion in the winter hemisphere, which is consis-
tent with parcels cooling and decreasing their θ via radiative cooling in
the infrared (from D to B).

4


