
Solution to Chapter 4’s problems

Q1. Calculation of the Rossby number indicates that the system is not
in geostrophic balance since Ro = 10/(10−4 × 10km) = 10 � 1. For the
hydrostatic approximation, we must check the magnitude of α∂P ′/∂z com-
pared to the vertical acceleration. Using α ≈ 1kgm−3, one gets α∂P ′/∂z ≈
10hPa/10km = 0.1ms−2. Likewise, the vertical acceleration is w∂w/∂z ≈
1/10km = 10−4ms−2 but it also has the contribution u∂w/∂x ≈ 10 ×
1/10km = 10−3ms−2. So the hydrostatic approximation holds for this sys-
tem.

Q2. The plane is moving along a latitude circle, eastward, and at constant
pressure. Since we’re told that the pressure surface P = 100hPa slopes
downward along the motion (∆z = 6000−5750 = 250m), it means that there
is a pressure difference at fixed height (high to the west, low to the east).
From geostrophic balance, this pressure difference must, in the Northern
Hemisphere, drive a motion towards the equator hence there will be a drift
towards lower latitudes.

To make quantitative statements, we need to make a few additional as-
sumptions. I am going to assume that the east-west pressure gradient is on
the order of 10hPa/1000km (typical of large scale systems in midlatitudes).
At a height of 6km, the density is roughly the surface value (≈ 1kg/m3)
times e−6/8 (assuming a scale height of 8km) so the specific volume is roughly
e6/8 = 2m3/kg. Hence,
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In a time ∆t = 1h, the equatorward drift is v∆t = 72km, i.e., a drift in
latitude slightly less than a degree.

NB: I haven’t actually used the value ∆z = 250m. A student (Adrian)
suggested this could be included by using the equality used in section 4.2.3
(thermal wind),
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We know ∆z so it is just a matter of guessing how far a plane moves in one
hour (∆x) to estimate the pressure gradient term as α∂P/∂x ' g∆z/∆x. A
value of 1000km/h is not unreasonable, yielding ∆x = 1000km and a velocity
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v ' 24m/s.

Q3.

(i) The parcel goes around in circles of radius R cosφ, with angular ve-
locity Ω + u/R cosφ. It thus experiences a centrifugal force (Ω +
u/R cosφ)2R cosφ. This force has components cosφk − sinφj in the
local coordinate system. Hence the particle feels a northward accelera-
tion −Ω2R cosφ sinφ− u2 tanφ/R− 2Ωu sinφ. The first term depends
only on position and is a contribution to the apparent gravity g′. The
second and third terms are readily seen in eq. (4.31). Conversely, pro-
jecting onto the vertical direction, we obtain an upward acceleration
Ω2R cos2 φ + 2Ωu cosφ + u2/R. The first term is again contributing
to g′ while the second is identified with the Coriolis acceleration. The
third term is indeed present in (4.27).

(ii) (a) Angular momentum is the product of azimuthal velocity and ra-
dius hence the angular momentum of the parcel at rest is ΩR2 cos2 φ.

(b) As the parcel moves north it gets closer to the axis of rotation
(R cosφ decreases). If it conserves its angular momentum, the
parcel must thus increase its azimuthal velocity, implying that an
eastward acceleration must have taken place.

(c) This is a consequence of the new angular velocity Ω+u/R cos(φ+
δφ) and the new radius R cos(φ+ δφ).

(d) Conservation of angular momentum yields ΩR2 cos2 φ = [Ω +
u/R cos(φ + δφ)][R cos(φ + δφ)]2. Using cos(φ + δφ) ≈ cosφ −
δφ sinφ, we obtain, to leading order in small quantities (δu, δφ),
0 = −ΩR22δφ sinφ cosφ+δuR cosφ. From this, δu = 2ΩR sinφδφ
(sign makes sense since poleward motion v > 0 must lead to faster
cyclonic azimuthal flow u > 0), so that, since v ≡ Rδφ/δt (in the
limit of very small δφ, δt), δu/δt = 2Ω sinφv.

(iii) If the parcel is initially accelerated upwards, it will gain a height δz in
a time δt. Note that it will still increase its latitude by δφ (as in (ii)b,
a momentum impulse is given to the parcel in the northward direction)
so the calculation is the same as before, but with a slightly different
version of the conservation of angular momentum: Ω(R+ δz)2 cos2 φ =
[Ω+u/(R+δz) cos(φ+δφ)][(R+δz) cos(φ+δφ)]2. Noting that w = δz/δt
we get, δu/δt = 2Ωv sinφ− 2Ωw cosφ.

Q4.
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(i) Start by rewriting (4.42) as,
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Then, approximate z1 − z2 as,
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The result follows.

(ii) Applying the formula with f = 2Ω sin 45◦ yields u1 − u2 ≈ 90m/s.
Assuming the winds to be small near the Earth’s surface, we get u1 ≈
90m/s. This is a very strong jet! (most likely due the deep extent
assumed 1000− 200hPa).

Q5?. The geometry of the problem is summarized in Fig. 1a.

(i) We need to scale the relative magnitude of ζ and f . Typically, ζ = U/L
so the ration ζ/f ≈ U/(fL). In midlatitudes, f ≈ 10−4s−1 so, using
U = 2cm/s and L = 4000km (rough size of the Atlantic basin), we
obtain ζ/f ≈ 5.10−5. We can thus indeed safely neglect the relative
vorticity (you may notice that this question readily provides another
interpretation for the Rossby number, namely the ratio of the relative
vorticity to the planetary vorticity in the flow). If the gyre occupies
the range of latitude between 10◦N and 50◦N , the loss of vorticity in
the equatorward leg of the gyre will be ∆ζa ≈ f(10◦N) − f(50◦N) =
−8.6.10−5s−1. If you’re interested to know more about this, the loss
of absolute vorticity arises because the net wind effect is to squeeeze
ocean columns (a bit like a ballerina wrapping onto herself spins less
fast).

(ii) Repeating the calculation for the poleward leg, we get ζ/f ≈ 2ms−1/(30×
km × 10−4s−1) = O(1). So we cannot neglect the relative vorticity of
the flow in the Gulf Stream.

(iii) To complete a loop, and so come back to their initial state, water parcels
must regain in the Gulf Stream the loss of ζa they experienced during
the equatorward journey. Thus ζ + f must increase in the poleward
leg.
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Figure 1: (a) Schematic of a subtropical gyre in the longitude/latitude plane.
(b) A failed attempt to create a Gulf Stream off the coast of Portugal! This
schematic zooms in on a portion of the subtropical gyre near the coast of
Portugal. An hypothetical poleward flow there would be associated with an
equatorward frictional force (magenta arrow) greater near the coast. This
would tend to make the fluid spin in a clockwise way (curly magenta arrow).
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(iv) The idea here is that friction must provide the mechanism increasing
the absolute vorticity of the fluid parcels. You need to do a draw-
ing to see the difference between each side of the Atlantic (Fig. 1b).
If the Gulf Stream were on the west coast of Portugal, the frictional
force acting on the poleward flow would tend to rotate the flow in a
clockwise way. This is a gain of negative absolute vorticity (like in an
anticyclone), so cannot provide the required gain. If you plot the same
diagram for the east coast of the US, you’ll find that this time frictional
effects act in the right direction.

NB: The first mathematical model to explain the presence of the Gulf
Stream was put forward in 1948 in a paper by Henry Stommel entitled
“The western intensification of wind-driven ocean currents”. Stommel
was one of the founding fathers of physical oceanography.

Q6. The analogy with low pressure systems is completely inadequate. For
one thing, the Rossby number for this bath tube flow is very large (taking
U = 3cm/s, L = 10cm I get Ro ≈ 2000) so the geostrophic balance on which
the different sense of circulation is based is not relevant to the bath tube
problem. Another way to see this is that a bath tube flow has no vorticity
(remember the video shown in the Lecture on vorticity), while low pressure
systems are full of it.

The analogy with low pressure system is not correct but, as the movie on
vorticity (see Blackboard) shows, if care is taken in a lab, one can visualize
the effect of the Earth’s rotation in a sink flow. If the movie apparatus is
used in the Northern or Southern hemispheres (i.e., with a large tank and
a very slow drain), the vorticity-meter will rotate counter-clockwise in the
North but clockwise in the South. In a real sink flow, you will more likely
notice the gyral motion associated with the angular momentum of the flow
(which has no vorticity and thus would not make the vorticity-meter turn).
This gyral motion can be clockwise or anti-clockwise depending on the initial
conditions.

Q7.

(i) Vorticity is a vector defined as the curl of the velocity field. Its vertical
component is particularly important as the geostrophic flow makes an
important contribution to it. It is important to understand and pre-
dict the weather because, unlike the geostrophic approximation which
is purely diagnostic, the vorticity equation predicts evolution through
time.
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(ii) Start with conservation of the vertical component of vorticity (ζa =
f + ζ) for a 2D (horizontal) flow,

D(f + ζ)

Dt
= 0 (5)

where D/Dt = ∂/∂t + u∂/∂x + v∂/∂y. We are interested here in the
linearised version of this equation, with u = U + u′ and v = 0 + v′ (no
background flow in the North South direction),

∂ζ ′

∂t
+ U

∂ζ ′

∂x
+ v′

df

dy
= 0 (6)

where ζ ′ = ∂v′/∂x− ∂u′/∂y. In addition, we assume no y dependence
for U, u′ and v′, hence,

[
∂

∂t
+ U

∂

∂x
]
∂v′

∂x
+ βv′ = 0 (7)

This starts to look like the answer. To get there, consider solutions
of the form v′ = eik(x−ct), leading to ∂v′/∂t = −c∂v′/∂x. Hence the
formula given in the exam.

To obtain the value of c, expand the second derivative as a function of
the zonal wavenumber k,

(U − c)(−k2)v′ + βv′ = 0 (8)

This leads to c = U − β/k2.

(iii) For a stationary wave c = 0, leading to k =
√
β/U . At 50◦N , β =

2Ω cos(50◦)/R = 1.46 × 10−11m−1s−1, leading, for U = 50ms−1 to
k = 2π/(11, 590km). The parameter β would be larger at a lower
latitude, so the curve c(k) would shift towards the right: this wave
would appear to propagate westward (c < 0).
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