
Solution to Chapter 5’s problems

Q1. First compute the energy associated with either the presence of sea ice
and a 0.1K increase in global ocean temperature. For the sea ice, this energy
(in Jm−2) is ρihilf where ρi is ice density, hi is ice thickness and lf is the
latent heat of fusion for water. For the ocean temperature change, this energy
is ρocoho∆T in which ρo is ocean density, co is the specific heat capacity of
the oceans, ∆T = 0.1K and ho is the averaged depth of the ocean.

Putting numbers, one finds, ρihilf = 0.5 × 109Jm−2 and ρocoho∆T =
1.5 × 109Jm−2. The time it would take to melt the sea ice would thus be
0.5 × 109Jm−2/0.5Wm−2 = 35 years and it would take about three times
longer (' 100 years) to increase the global ocean temperature by 0.1K. The
point is that complete disappearance of the sea ice represents a small amount
of energy in comparison to ocean temperature rise: it is equivalent to a global
ocean temperature increase of 0.03K only.

NB: Obviously the scenario used here is somewhat unrealistic for the ocean
since the infrared flux would only be felt at the surface not through the whole
depth of the ocean –the warming at depth would penetrate due to transport
by currents and this could take longer than 100 years. Note also the absence
of feedbacks: were the sea ice to disappear, the TOA radiative fluxes would
change since the planetary albedo would decrease accordingly.

Q2.

(i) The emission level is simply, according to the definition given in the
question, the height at which temperature equals the emission tem-
perature. From Chapter 2, this temperature is TE = 255K. If the
surface temperature is 288K and the lapse-rate is 7K/km, this height
corresponds to (288− 255)/7 = 4.7km.

(ii) When CO2 is increased, so does the opacity of the atmosphere in the
infrared. The OLR is accordingly weakened and the radiation emitted
by the Earth must come from “higher up” in the troposphere where the
temperature is smaller. Hence an increase in the emission level (Fig.
1).

(iii) At equilibrium, the OLR must still be the same than before the CO2

perturbation is applied, assuming the absorbed solar flux does not
change. Thus the temperature at the new height (ze + δze) of the
emission level must still be 255K. Fig. 1 illustrates the old (To,
solid curve) and new (T1, dashed curve) temperature profiles. Assum-
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Figure 1: Schematic of temperature as a function of height, indicating the
emission temperature and emission level. The increase in emission level in
response to a sudden doubling of CO2 is also indicated, as well as the cor-
repsonding change in temperature (dot-dashed and dashed curves).

ing the lapse rate is unchanged and a 3K warming, one must have:
3K/δze = 7K/km. This yields an increase δze ≈ 420m.

(iv) Fig. 1 illustrates the solution. Start at ze + δze, where the tempera-
ture is the same as in the “no lapse-rate change” case, i.e., equal to Te.
Since the lapse-rate decreases with surface warming, the new temper-
ature profile must decrease less sharply with height than T1 does, as
indicated on the diagram (dot-dashed line). As can be seen, the surface
temperature change is accordingly smaller. The lapse-rate feedback is
negative.

Q3.

(i) By definition sv−sl = lv/T in which lv is the latent heat of vaporization
and vv � vl; the result follows.
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(ii) Treating water vapour as an ideal gas, eeqvv = NkBT/(Nmv) = kBT/mv

in which N is the number of water vapour molecules, each of mass mv

and kB is the Boltzmann constant. The result follows.

(iii) Rearranging, we obtain

deeq
eeq
' lv
RvT 2

dT (1)

For lv = 2.5 106Jkg−1, Rv = 461Jkg−1K−1 and T = Ts = 288K, we
find deeq/eeq ' 0.07K−1, or, an increase in equilibrium vapour pressure
of 7% per degree K warming.

This result does not strictly apply to the actual vapour pressure e, only
to the equilibrium vapour pressure eeq. The two are linked through
the relative humidity (≡ e/eeq –see Chapter 1). It is an important
result from climate models that they show only weak changes in relative
humidity with anthropogenic forcing, thereby implying that de/e also
follows the Clausius-Clapeyron scaling.

Q4. This statement is wrong. First, as expressed by the thermal wind rela-
tion, horizontal temperature gradients drive the vertical gradient of the wind,
not the wind itself. For example, applying the relation in Q3(i) (Chapter 4),

u2 − u1 ≈
Rd

f

(
ln
P2

P1

)
∂T

∂y
(2)

where level 1 is taken as that where the jet is strongest (tropopause) and
level 2 is taken as the Earth’s surface. This shows that changes in ∂T/∂y
will affect u2 − u1, not u1.

Let’s nevertheless assume that one could ignore the latter (maybe because
they could be small compared to those occurring higher up) and estimate by
how much one would change the jetstream velocity u1. From the formula,

δu1 ≈ −
Rd

f

(
ln
P2

P1

)
δ

(
∂T

∂y

)
(3)

in which δ indicates the change as a result of increasing greenhouse gas
concentrations. Indeed, if the poles warm up quicker than the equator,
δ(∂T/∂y) > 0 (remember that ∂T/∂y < 0 since temperature decreases pole-
ward in the troposphere) and so the jet weakens (δu1 < 0). The larger
warming (' 1K) of the Arctic is confined to a surface layer extending from
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1000hPa to about 600hPa. So, the vertically averaged change in temper-
ature is weighted by a factor 600/1000 compared to that occurring in this
layer. Taking the gradient from equator to pole, f at 45◦N , P1 = 200hPa
(tropopause pressure) at that latitude, P2 = 1000hPa, one degree of latitude
≈ 100km, we get,

δu1 ≈ −
600

1000
× 287

10−4
×

(
ln

1000

200

)(
1K

90× 100km

)
≈ −0.3ms−1 (4)

In reality, the change would be even smaller because the equator-to-pole
temperature gradient actually increases at upper levels (we’ll see this when
we talk about climate change). Considering the average jetstream speed is
≈ 30ms−1, the change caused by Arctic warming is negligible.

NB: A word of caution. The vertical shear of the wind seems indeed not to
be changed too much by Arctic warming. But it might be that the wind
itself decreases more substantially as a result of Arctic warming (the latter
might perturb the path of the storms and the excitation of Rossby waves,
possibly leading to less momentum transport into the jetstream). We would
need a climate model to look into this interesting possibility...

Q5.

(i) The timescale for the upper ocean is tu = ρocoh/α and that for the deep
ocean td = ρocoH/α. Using the values given, one obtains tu ≈ 4yrs and
td ≈ 165yrs. For timescales � tu, upper ocean temperature anomalies
have had time to equilibrate with the forcing so one can consider the
upper ocean to have zero heat capacity. On timescales � td, deep
ocean temperature anomaly have not had time to develop and so one
can treat the deep ocean as a heat reservoir.

(ii) On short timescales (� tu) after the forcing has been switched on,
the upper ocean hasn’t had time to develop a significant temperature
anomaly, i.e., T ′ ≈ 0. The imbalance at the TOA is thus simpy N ′ ≈
F ′ = 4Wm−2.

(iii) On intermediate timescales (� tu but � td), the upper ocean has had
time to develop a temperature anomaly in response to anthropogenic
heating. At these timescales, the upper ocean is in equilibrium with this
forcing F ′ and the heat transported to the deeper ocean O′: N ′ = O′.
Using O′ = κT ′, this leads to T ′ = F ′/(α + κ) and N ′ = F ′κ/(α + κ).
Putting numbers, one obtains T ′ ≈ 1.9K and N ′ = 0.95Wm−2.
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(iii) At equilibrium there is not net energy imbalance at the TOA, thus
N ′ = 0 and T ′ = F ′/α = 2.5K. This temperature change (equilibrium
response to a doubling of CO2) is called “climate sensitivity”.
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