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1 The problem

The simplest model for symmetric instability is provided by considering an
unbounded domain filled with a fluid under rotation and in thermal wind
balance with an horizontal temperature gradient. In terms of geometry, take
the background thermal wind vo(z) to be in the y direction and assume
∂/∂y = 0 everywhere (2D symmetry). Then:

fo
∂vo
∂z

=
g

θo

∂θo
∂x

(1)

in which θo is the background temperature gradient (f-plane and Boussinesq
approximation are used). This background flow has a vorticity vector ζo
whose components in the (x, y, z) plane are:

ζo = (−vo,z, 0, fo) (2)

The key question is whether such vortex can be destabilized by small per-
turbations.

2 The solution

In an unbounded domain, the answer is that the vortex will be destabilized by
a very simple form of motion: ascent and descent along constant temperature
surfaces θ (Bennets and Hoskins, 1979). To understand why this happens,
write the momentum balance for a small perturbation (u′, v′, w′):

∂u′

∂t
− fov′ = − 1

ρo

∂P ′

∂x
(3)

∂v′

∂t
+ w′vo,z + fou

′ = − 1

ρo

∂P ′

∂y
= 0 (4)

These can be further simplified for motions along θ-surface because these,
in the limit of the hydrostatic approximation, do not create temperature
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perturbations and thus no pressure perturbations. The ∂P ′/∂x term can
then be dropped and the momentum equations can be simply rewritten as:

∂u′

∂t
− fov′ = 0 (5)

∂v′

∂t
+ w′vo,z + fou

′ = 0 (6)

In absence of thermal wind shear (vo,z), i.e., when ζo is purely vertical, the
vortex is stable since all that can happen are “inertial oscillations” whose
energy can not change because the Coriolis force does not do work on the
flow:

∂u′

∂t
− fov′ = 0 (7)

∂v′

∂t
+ fou

′ = 0 (8)

∂

∂t
(u′2 + v′2) = 0 (9)

With thermal wind however, the vertical advection term w′vo,z (the “iner-
tial acceleration”) opposes the stabilizing effect of the fou

′ term since, along
a θ surface these are anti-correlated (Fig. 1). Whether there is stability or
not thus depends on the relative magnitude of the w′vo,z and fou

′ terms. It
would be ideal to be able to write their sum as a single term –this can be
done by introducing ζo.

To get there, first use the fact that along a θ surface, one has:

u′θo,x + w′θo,z = 0 (10)

As a result,

w′vo,z + fou
′ =

u′

θo,z
(foθo,z − vo,zθo,x) (11)

From the definition (2), this is nothing else than:

w′vo,z + fou
′ =

u′

θo,z
ζo.∇θo (12)

Defining ζθ as the projection of ζo along the normal to a θ surface, i.e.,

ζθ ≡
ζo.∇θo
θo,z

(13)
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the momentum equations can finally be rewritten as:

∂u′

∂t
− fov′ = 0 (14)

∂v′

∂t
+ ζθu

′ = 0 (15)

The analogy with the inertial oscillation is clear and growth can occur if
foζθ < 0. Geometrically, this simply means that the vortex is destabilized
when ζo is more horizontal than the θo surfaces (Fig. 1). Conversely, the
vortex is neutral to the perturbations when ζo is aligned with the θo surfaces.
It is stable to the perturbations when more vertical than the θo surfaces. A
convenient alternative to ζo is to introduce the scalar M (called “absolute
momentum” by Eliassen (1962) in analogy with absolute vorticity being the
sum of planetary and relative components) defined by:

M ≡ fox+ v (16)

It is readily seen that ζo is aligned with surfaces of constant Mo = fox + vo
since ζo.∇Mo = −vo,zfo + fovo,z = 0 –this is why surfaces of constant Mo are
shown in Fig. 1.

3 Useful properties of the solution

The ascent / descent along isentropes illustrated in the previous solution
comes up systematically in numerical simulations of SI, even in the presence
of boundaries (Miller, 1984; Thorpe and Rotunno, 1989; Thomas and Taylor,
2010). There are a couple of useful properties of this solution that need to
be highlighted.

In terms of horizontal scale, the perturbation in Fig. 1 will adopt a wave-
length set by the depth of the unstable zone and the slope of the isentropes
(Emanuel, 1979).

In terms of energy, the perturbation feeds on the kinetic energy of the
thermal wind flow. Indeed, from the momentum equations, one readily gets
that:

1

2

∂

∂t
(u′2 + v′2) = −w′v′vo,z (17)

A growing perturbation tends to reduce the thermal wind shear (w′v′ < 0)
by transporting meridional momentum downward. At first sight this looks
like the perturbation is trying to neutralize the background flow but, in an
infinite domain, this will not happen (the PV is negative everywhere initially
and will not become zero by pure advection since fluid parcels conserve their
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Figure 1: The most unstable perturbation for the background thermal wind
flow is a simple ascent / descent along isentropes. The projection of the
absolute vorticity vector onto the isentropic gradient is negative and this
means that inertial acceleration dominates over the Coriolis force in the y-
momentum equation.
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PV –this is a very striking feature of SI emphasized by Thorpe and Rotunno,
1989). The finite amplitude evolution is thus that the M surfaces become
more and more vertical (reduced vertical windshear) and that the θ surfaces
follow in order to conserve PV.

Because of v′w′ < 0, there will be, at fixed height, an alternation of
northward/southward flow. Another way to say this is that the background
frontal wind breaks up into narrower jets.

The perturbation also transports zonal momentum downwards since, from
(10), u′w′ ∝ −u′2θo,x/θo,z < 0. Thus one anticipates that, in addition to
reducing the thermal wind shear, a “coldward” jet will be produced above
a localized region experiencing SI and a “warmward” jet below (jets in the
plane orthogonal to the background thermal wind). This is schematized in
Fig. 2 (strictly speaking this really applies to an unstable zone localized in z
but infinite in the horizontal direction since otherwise vo,x could change the
dynamics).

Figure 2: The white arrow represents the transport of zonal and meridional
momentum by a localized (shaded ellipse), growing, perturbation. The as-
sociated impact is to reduce the background meridional wind shear and to
produce jets in the plane orthogonal to the latter (filled arrows). This trans-
verse circulation will tend to reduce the horizontal temperature gradient but
enhance the vertical temperature gradient.

An interesting aspect of Fig. 2 is that even though the solution illus-
trated in Fig. 1 does not transport heat (θ′ = 0), the large scale circulation
induced by the growing perturbation will tend to tilt the isentropes towards
the horizontal, i.e., transport heat upwards.
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