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1 The Hoskins-Karoly model

The focus of this section is on section 3a of Hoskins and Karoly (1981, here-

after HK81), aiming at deriving their eqs. (3.1) and (3.2) from “first prin-

ciples” and at explaining some of the meteorological jargon they used. The

same notations are used as in HK81.

1.1 The physical model: the background state

We are looking at linear perturbations developing on the Jet Stream, pertur-

bations caused by a prescribed heating and cooling within the atmosphere.

This heating/cooling is somehow related to the ocean circulation but we will

not attempt at doing so (prescribed heating/cooling).

The Jet Stream is simply represented as a background eastward flow u

which is linearly increasing with height z:

u(z) = uzz (1)

In this equation uz is the constant vertical derivative of u. It is important to

emphasize that throughout the paper we are talking about motions relative

to an observer moving with the Earth. So the total zonal (=west to east)

wind is actually u+ ΩR in which Ω is the Earth’s angular rotation and R its

radius. In other words air parcels in the Jet Stream rotate faster than the
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Earth. Also, from now on, all variables with an overbar refer to values for

the background state.

A Coriolis force acts on eastward moving parcels, accelerating them to-

wards the equator. If the background state is a state of equilibrium something

must oppose the Coriolis force: this is the pressure gradient force. To pro-

duce a poleward acceleration we must have high pressure at low latitudes

and low pressure at high latitudes. This simplification of the momentum

equation is called the geostrophic balance:

fu = − 1

ρo

∂P

∂y
(2)

In the latter, y denotes the north-south direction (in meters, i.e., dy = Rdφ

in which R is φ is the latitude in radians), P is the pressure and f is the

Coriolis parameter:

f ≡ 2Ω sinφ (3)

Note the constant term ρo in (2), which is a reference density (this does not

have to be taken constant for geostrophic balance but it will simplify the

subsequent derivation).

Equation (2) is only the component of Newton’s law in the meridional

(=north-south) direction. In the vertical, we assume that gravity is opposed

by pressure gradients, i.e., high pressure at the Earth’s surface and low pres-
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sure aloft. This the hydrostatic approximation:

ρg = −∂P
∂z

(4)

The trick of keeping the full ρ on the left hand side of (4) but the reference

value in (2) is called the Boussinesq approximation (it does not change the

basic physics in HK81 but simplifies greatly the maths).

There is no need to consider the zonal component of Newton’s law of

motion because there is no meridional motion and no pressure variations

along a latitude circle in the background state, i.e.:

v = 0 and
∂P

∂x
= 0 (5)

So far we have only talked about Newton’s law. To know the pressure

field we need to make a few more assumptions about the thermodynamics

of the model. In fact it is very simple, we assume the following equation of

state:

ρ = ρo(1− αθ) (6)

in which α is a constant and θ is “potential temperature” (this is meteorol-

ogists’ entropy: s = cp log θ).

In summary, the background atmospheric state is a purely zonal flow in

geostrophic and hydrostatic balance with the pressure field. If we do not

perturb it, nothing happens. If we heat or cool the atmosphere, the entropy
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will increase or decrease, density perturbations will be created through (6)

and this will in turn cause pressure perturbations through (4). The problem

addressed by HK81 is to characterize the steady perturbations developing

in response to an imposed heating or cooling: is a low pressure created in

response to heating? does this affect the whole air column or just the surface?

etc.

1.2 The physical model: perturbations

We assume that the forcing is small enough that perturbations (denoted by

a prime) will be small compared to their values in the background state. For

example, u = u + u′ with u′ � u or ρ = ρ + ρ′ with ρ′ � ρ. For some

variables like the north-south wind v however this cannot be since v = 0 and

thus v = v′. Perturbations are assumed independent of time but 3D, i.e.

u′ = u′(x, y, z), v′ = v′(x, y, z) etc.

To get to eq. (3.1) we need to write the two horizontal components of

Newton’s law for small perturbations:

u
∂u′

∂x
− fv′ = − 1

ρo

∂P ′

∂x
(7)

u
∂v′

∂x
+ fu′ = − 1

ρo

∂P ′

∂y
(8)

In the vertical we still assume that perturbations follow the hydrostatic bal-
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ance:

ρ′g = −∂P
′

∂z
(9)

or, using (6):

−αρoθ′g = −∂P
′

∂z
(10)

Now take the x-derivative of (8) and substract the y-derivative of (7) and

simplifies the notations, as in HK81, by writing for example ∂u′/∂x ≡ u′x.

We obtain:

u(v′x − u′y)x + (fu′)x + (fv′)y = 0 (11)

since the pressure terms cancel and u is independent of x, y. We are almost

at eq. (3.1) in HK81! To finish the job, we must say something about mass

conservation. This is where again we use the Boussinesq trick and replace

mass conservation by volume conservation:

ux + vy + wz = 0 (12)

In (12), w is the vertical velocity. Applied to the background state this

equation just says that wz = 0. With w = 0 at the ground (no mountains...),

it produces w = 0 everywhere. For the perturbations, it becomes:

u′x + v′y + w′z = 0 (13)

Introducing the latter in (11)

u(v′x − u′y)x + u′fx + vfy = fw′z (14)
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From the definition (3), the Coriolis parameter is only a function of latitude,

i.e. fx = 0. Defining β as

β ≡ fy = 2Ω cosφ/R (15)

we obtain

u(v′x − u′y)x + βv′ = fw′z (16)

This is eq. (3.1) of HK81 after introducing the relative vorticity ζ:

ζ ≡ vx − uy (17)

This quantity is a measure of spin of air parcels around the vertical axis.

To get to HK81’s eq. (3.2) is more straightforward because it is simply

a hidden version of the 2nd law of thermodynamics: ds/dt = Q̇/T in which

Q̇ is the heating rate and T temperature. The d/dt here reflects the change

following an air parcel to which we apply the 2nd law, i.e.

d

dt
≡ ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
(18)

To see where this comes from, simply think s = s(x, y, z, t) and apply the

usual partial differentials of thermodynamics:

ds = (
∂s

∂x
)dx+ (

∂s

∂y
)dy + (

∂s

∂z
)dz + (

∂s

∂t
)dt (19)

The connection should now be clear, acknowledging that u ≡ dx/dt, etc.
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Linearizing the 2nd law for a steady state (∂/∂t = 0) we get:

us′x + v′sy + w′sz = (
Q̇

T
)′ =

Q̇′

T
(20)

Note the background gradients sy and sz which are needed to sustain the

pressure gradients in (2) and (4). Using the definition of θ, this can be

rewritten as:

uθ′x + v′θy + w′θz =
θ

cpT
Q̇′ (21)

This is eq. (3.2a) of HK81 in a disguised form. The version actually needed

is eq. (3.2b) which we can get to after a few more manipulations. To see

this derive first a “thermal wind” relationship for the background state, by

combining (2) and (4):

fuz = −gαθy (22)

Likewise for the perturbations we make the geostrophic approximation1 to

(7):

−fv′ = − 1

ρo

∂P ′

∂x
(23)

which, combined with (10), provides a thermal wind relation for the pertur-

1Anticipating on section 3, you can scale the full equation and you will see that the

geostrophic approximation is valid as long as the non dimensional number u/fL is small

compared to unity. This implies that we restrict ourselves to horizontal scales L� u/f '

10/10−4 = 100km.
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bations:

fv′z = gαθ′x (24)

This allows to rewrite (21) as:

(f/gα)uv′z − (f/gα)v′uz + w′θz =
θ

cpT
Q̇′ (25)

Multiply by gα, this becomes:

fuv′z − fv′uz + w′gαθz =
gαθ

cpT
Q̇′ (26)

Introduce Q ≡ gαθ

cpT
Q̇′ and

N2 ≡ gαθz (27)

and we finally obtain eq. (3.2b) of HK81:

fuv′z − fv′uz + w′N2 = Q (28)

Note that N is a well known quantity: the buoyancy frequency of the

atmosphere. It is the frequency at which air parcels oscillate vertically

due to restoring effect of buoyancy forces. This frequency is quite rapid,

N ' 10−2s−1 = 1/100s.

1.3 The predicted response of the atmosphere to heat-

ing and cooling

Now comes the interesting part of making predictions regarding the pertur-

bations caused by Q without solving the equations! To do this we perform
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a scaling analysis of the equations, that is, we look which terms are more

important for a given horizontal scale L (the scale of the prescribed heating

considered). We do not distinguish between zonal (Lx) and meridional (Ly)

scales, i.e. we take L ' Lx ' Ly. In addition we assume a similar velocity

scale for u′ and v′ and we simply denote it by v′.

To see how it works, let’s focus on the vorticity equation:

uζ ′x + βv′ = fw′z (29)

The first term on the l.h.s is a local increase of spin when the flow brings

high vorticity fluid. This scales as uv′/L2 using the definition (17). The

second term is the local increase in spin when the flow brings fluid from the

north. This occurs because the projection of the Earth’s rotation onto the

local vertical is optimal at the North pole and zero at the equator (the “β-

effect”). This second term scales simply as βv′ so that the ratio of the first

to the second term is:

uv′/L2 ÷ βv′ = u

βL2
(30)

This shows that there is a typical horizontal lengthscale (u/β)1/2 in this

problem and that perturbations with L � (u/β)1/2 have a simple vorticity

balance:

βv′ ≈ fw′z for L� (u/β)1/2 (31)

To see how large is this reference scale, we note that in midlatitudes β '
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2.10−11m−1s−1 and that u ' 10ms−1. This provides:

(u/β)1/2 ' 700km (32)

So for heating/cooling on a scale of a few thousand km, we can safely use

(31). This is a nice simplification of the problem which we will use, focusing

from now on on horizontal scales larger than (u/β)1/2. (Alternatively, one

can think of the Sverdrup balance as more relevant to low levels where u is

small).

Introduce now two vertical scales:

Hu ≡ u/uz and HQ ≡ Q/Qz (33)

The Jet Stream goes typically from near zero at the surface to several tens

of ms−1 at a height of 10km in midlatitudes, so Hu ' 10/(30/10km) = 3km.

We’ll fix this and will simply consider the case of “deep heating” for which

HQ � Hu because it is the case most relevant to ocean-atmosphere interac-

tions in the Tropics and over western boundary currents in midlatitudes.

Consider now the thermodynamic equation (28). It is made of three

terms on the l.h.s which are, respectively, advection of entropy in the east-

west direction, in the north-south direction, and in the vertical direction. If

the first of these dominate, it must be associated with a meridional velocity

scale

v′ ' QHQ/fu (if zonal advection dominates) (34)
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Likewise if the 2nd term dominates:

v′ ' Q/fuz = QHu/fu (if meridional advection dominates) (35)

Finally, if the 3rd term dominates (using the simplified vorticity balance):

v′ ' fw′/βHQ = fQ/βN2HQ (if vertical advection dominates) (36)

The key assumption is now that the mechanism with smallest v′ will dominate

(this is a thermodynamic efficiency argument: converting heating/cooling

into motion is difficult so it’s likely that Nature will opt for the “smallest effort

required”). The assumption of deep heating removes the zonal advection so

there is only to compare meridional and vertical advection. The ratio γ of

the 3rd to the 2nd term is:

γ ≡ f 2u

βN2HQHu

(37)

In other words,

v′θy ≈
θ

cpT
Q̇′ for γ � 1 (38)

and

w′θz ≈
θ

cpT
Q̇′ for γ � 1 (39)

These two limits correspond to very different physical situations. In the

case where γ � 1, heating is opposed by cooling due to the advection of

cold air from the pole (v′ < 0). From the vorticity equation (31) this implies
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downward motion at mid-levels since w′ = 0 at the surface. From geostrophy,

a low pressure must be found to the east of the heating. This is the situation

depicted in HK81’s Fig. 2b. However, in the case where γ � 1, heating

is opposed by cooling due to expansion of a rising air parcel. From the

vorticity equation (31) this implies poleward motion (v′ > 0 in the Northern

Hemisphere where f > 0) at low-levels since w′ = 0 at the surface. This

implies a low pressure to the west of the heating by geostrophy. This is the

situation depicted in HK81’s Fig. 2a.

Interestingly, there is a strong dependence of γ with latitude as a result

of the factor f 2/β in (37) –see Fig. 1. As a result, the case γ � 1 can be

associated with low latitudes and γ � 1 with high latitudes.

1.4 Further comments

The Sverdrup balance and ascent over a heat source is clearly relevant at

low latitudes because of the large horizontal scale of the diabatic heating

in the Tropics (see more on the interpretation of what the heat source re-

ally represents in the next section). In midlatitudes, and in agreement with

observations over the Gulf Stream by Minobe (2008), vertical ascent over

the heat source is still relevant, as is advection of cold air from the poles to

balance the heat source, because Sverdrup balance can be broken (i.e., the
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Figure 1: The parameter γ as a function of latitude assuming fixed values

HQ = 6km,Hu = 3km,N = 10−2s−1 and u = 10ms−1.
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zonal advection of vorticity cannot be neglected). This is more so for deep

heating than shallow heating because u is nearly zero near the ground where

the heat source is intensified in the latter case.

It is also interesting to realise that even a shallow heating can lead to

upper level perturbations, which is particularly vivid in the experiments by

Hendon and Hartmann (1982). This is because one needs to reverse the sign

of ∂w′/∂z to bring w′ to zero at the tropopause, as required to satisfy the

boundary condition (w′ = 0 at the tropopause). And, from the conservation

of vorticity, this requires either uζ ′x or βv′ to be non zero at upper levels.

2 What does the heat source really repre-

sent?

The perturbations studied in the previous section typically represent climate

anomalies, for example, an El Nino situation or an anomalous NAO winter.

So the primes are departure from a time mean (e.g., winter time mean). This

means that there is in fact an additional term on the r.h.s of the heat conser-

vation equation. If we denote the averaging by a <> and the departures from

it by a ?, conservation of heat for the averaged variable reads, in general:

∂ < θ >

∂t
+ < v > .∇ < θ >=< Qdiab > −∇. < v?θ? > (40)



16

where

< Qdiab >=< Qrad > + < Qphase > + < Qsen > (41)

is the total diabatic heating (the sum of heating due to radiative processes,

phase change and temperature difference between air and water). So the Q

in HK81 is an apparent heating < Qapp > defined as:

< Qapp >=< Qdiab > −∇. < v?θ? > (42)

This can be quite different from any a priori assumed diabatic heating <

Qdiab > both at tropical (effect of convection) and extra-tropical (synoptic

weather systems) latitudes.


