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Observed changes in ocean heat content from
Argo floats (2004-2015)
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Key questions of this lecture:

* Are changes in upper ocean temperature only affecting the surface of
the atmosphere (¥1km)...?

e ...or do they extend upward beyond the first km or so?

* |If so, how does it work?
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Outline

* An overview of observed “coupled variability” between oceans and
atmosphere

 key issue: How do SST patterns affect the atmosphere above the
boundary layer?

Infrared snapshot: white=cold=cloud top



1. An overview of “coupled” ocean-atmosphere
variability

e Use de-seasonalised monthly anomalies in sea surface temperature
(SST) and sea level pressure (SLP) to compare the observed variability
in the North Atlantic, North Pacific, Equatorial Pacific and the
Southern Ocean

* Apply a maximum covariance analysis (MCA) to SST and SLP from the
ERA20C (1960-2010) reanalysis to do so

* Discuss predictability of ENSO and NAO
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SST (color) / MSLP (ci=0.25hPa) Equatorial Pacific
(Max Cov. Ana., ERA20C, D-J-F 1960-2010)
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SST / MSLP statistics for the Equatorial Pacific
(Max Cov. Ana., ERA20C, D-J-F 1960-2010)

 Monthly statistics:

SST 1-month autocor = 0.97
MSLP 1-month autocor = 0.84
Cross-corr: 0.89, 0.9, 0.89

* Longer timescale statistics:
strong covariability, clear
evidence of interannual
oscillation

Correlation
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SST (color) / MSLP (ci=1hPa) North Atlantic
(Max Cov. Ana., ERA20C, D-J-F 1960-2010)
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SST / MISLP statistics for the North Atlantic
(Max Cov. Ana., ERA20C, D-J-F 1960-2010)

* Monthly statistics: - |
SST 1-month autocor = 0.86 SST leads MSLP MSLP leads SST
MSLP 1-month autocor = 0.24 5.5
Cross-corr: 0.15, 0.47, 0.53 =
5
3 N
* Longer timescale statistics: 05 |
indication of decadal oscillation, ™|
with SST pattern reversing sign
6-8 years after MSLP M | | |
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SST (color) / MSLP (ci=1hPa) North Pacific
(Max Cov. Ana., ERA20C, D-J-F 1960-2010)
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SST / MISLP statistics for the North Pacific
(Max Cov. Ana., ERA20C, D-J-F 1960-2010)

* Monthly statistics:

SST 1-month autocor = 0.92
MSLP 1-month autocor = 0.41
Cross-corr: 0.44, 0.54, 0.64

Correlation

* Longer timescale statistics: strong
covariability; no stat. significant
delay but decadal oscillation seen in
each field separately (not shown)
- “stationary oscillation”

0.5}

0.5+

3

Lag (years)

SST leads MSLP MSLP leads SST
x A A A
-10 -5 0 5

10



SST (color) / MISLP (ci=1hPa) Southern Ocean
(Max Cov. Ana., ERA20C, J-J-A 1960-2010)

Latitude

SST anomaly (K)

s P Ve - — g S -
~

- ,// . g\) H ~
80F-44% of the covariantce explained" -

0 50 100 150 200
Longitude

NB Analysis extended globally via linear regression



SST / MISLP statistics for the Southern Ocean
(Max Cov. Ana., ERA20C, J-J-A 1960-2010)

* Monthly statistics:

SST 1-month autocor = 0.89
MSLP 1-month autocor = 0.18
Cross-corr: 0.34, 0.43, 0.45

* Longer timescale statistics:
indication of decadal oscillation,
with a reversal of SST pattern 5
years after MSL

Correlation
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Wyrti’s (1985) view of
El Nino

e El Nino = burst event to
release heat stored in the
equatorial Pacific

16
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Sea level anomalies in December 1982 (cm)
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Wyrkti’s (1985) view of El Nino

* “The explanation of an El Nino cycle as a combination of atmospheric
randomness and a deterministic ocean might be unpleasing to many
scientists, but it probably characterizes correctly the interaction
between the two media”



Predictive skill in the Tropics: “La Nada 2014”
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(slide courtesy of J. Vialard) See also McPhaden (2015)



Predictive skills in the extra-tropics
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Predictive skills in the extra-tropics

NAQ index (normalized)

Dunstone et al. (2016)
MSLP second-winter skill

NAO index
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Bjerknes (1964): Atlantic air-sea interactions
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The role of ocean advection in altering SST

Tasre III. Correlation of short-period residuals of  “Short
soa temperature versus pr,cssure difference Ponta trend”
Delgada minus Vestmannaeyar.

* The high latitude (>50N) correlation . Poriod  Testfield  Corr. cooff
I 1900-1928 61.5°N —0.48
between §trength O,f the \i\’/esterlllles and purns ALy
SST remains <0 for “short” and “long e b .
trends” (19-yr smoothing used) 1000-1928  425°N  —0.45
1900-1028 37.6°N —0.45
TABLE II..Corrclntion of sea temptfruture versus a4 g
* This contrasts with the 40-50N belt D tois, Bttt ot trend”
where positive correlations appear on A Rl G el
|Ong tlmescales 1900-1928 61.5°N —0.34
1900-1928 57.5°N —0.82

1900-1928 52.5°N —0.82 (4
1900-1928 47.5°N m’ |
1900-1928 42.5°N

1900-1928 37.5°N —0.37




Spatial patterns of MISLP and SST

“Short trends of change” “Long trends of change”

DIFFERENGCE IN PRESSURE AND CHANGE OF ANNUAL PRESSURE (mb)

IN SEA TEMPERATURE BETWEEN || ’ - i k5 it R T
HIGH INDEX 1904, 1913, 1920 AND 2 . . ‘_

LOW INDEX 1902, 1909, I9I5. FROM 1894 - 98
’ / TO 1920 - 24

NB The pre / post 1950 records do not agree on spatial pattern (Deser and Blackmon, 1993)



Bjerknes’ i Ry W

compensation e N\ |2

hypothesis E o F
a3 \ " _

* Mechanistically, periods of weak westerlies have higher than normal Ha, but
also lead to a weakening of the Gulf Stream and a weaker Ho, thus re-
establishing a constant total (Ho+Ha) poleward heat transport

* Climate variability reflects compensating fluctuations in oceanic (Ho) and
atmospheric (Ha) poleward heat transports, without significant changes in the

top-of-the-atmosphere radiative budget



Atlantic—Arctic ocean meridional heat transport Pacific—Indian ocean meridional heat transport
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* Because the Atlantic is the main contributor to oceanic poleward heat transport
(>40N), it plays a leading role in “natural” climate fluctuations.

* Bjerknes’ monograph is unclear as to causality and can be read as reflecting a
passive response of the ocean to the atmosphere. But it has opened the way to
much emphasis on driving of climate variability by the midlatitude oceans.



2. How do SST changes affect the atmosphere
above the boundary layer?

e Diabatic heating processes

* Theory: prescribe a heat source and predict the atmospheric
circulation response

* Challenge: apply the theory to observations and realistic numerical
experiments



Diabatic heating processes

* Any process adding or removing heat to/from air parcels:

* Exchange with Space: radiation (absorption or shortwave, absorption/emission
of longwave radiation)

e Exchange with the lower boundary (ocean, land, ice): radiative and turbulent
heat fluxes (“sensible” heat flux)

* Phase change: depending whether one works with dry or moist potential
temperature, this is taken as an exchange with the lower boundary (surface
evaporation) or an internal heat source (latent heat release) —see Emmanuel,
2000; Pauluis et al., 2010.




\ L 4

Diabatic heating in models (GcMsor | a5 ~~
diagnostics) ot + v}?ﬁ . “dmb
{ g.

* Need distinguishing between resolved (<>) and unresolved (*) processes,
or slow (<>) and fast (*) motions:

0 <t > __
T < v >V <0 >=< Quap > —V. <00 > (1)
:

with < Qdmb =< Q-rad >+ < Qphasc > 1+ < (gscﬂ. >

* The terms on the r.h.s of (1) represent an apparent heating for the
resolved flow which can be quite different from the assumed diabatic
heating taking place:

{ (ﬁ}app..-f—{ (Jdggb_.--' _V { U*Hk =




D|abat|c heatlng two examples
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G/oba/‘ Infrared image (shapshot): white = cold = cloud tops




Diabatic heating example 1: cumulus
narameterisation (e.g., vanai et al. 1973)

* Neglecting horizontal effects:

< wre* >

0z

< Qupp >=< Qgiap > —V. < U0 >~=< Quiap > —

e ..and using an idealised entrainment/detrainment

) TR
model for the cloud ensemble, one can obtain an
expression for the apparent heating: |7
) {_) :::: H ;'.: & =¥ ¢ r%g ) e
< (JQPP ~R< (J'Ttld >+ < (L)-sc-n > _|_*1Urc - — I’-t;f:"' S

Warming due to compensating

subsidence (Mc=cloud mass flux) Cooling due to re-evaporation

of cloud droplets



Diabatic heating example 2: Extra-tropical cyclones

13 December 2010 at 2231UTC
(GOES, Infrared)

Sector

/

e
Cold front



Diabatic heating example 2: extra-tropical cyclones or
“storm-track” (Hoskins & Valdes, 1990)

Averaged heating over the Northwest Atlantic (Cl=0.25K/day)

U T I u 1
—V. <v0" > ‘ < . °
- 200 + s 200 .
NB 2.5-6 400 | 4 400 L V-
day hlgh- P) A =) III
pass filter 00 | ! ‘\ N 600 L. -
applied j ‘h,\ :
800 | N - 800 | P
II fj f“.“‘:":‘\*“——“‘ g
P NS ~\
1000 T 1000
0 30 60 90 0 90
LATITUDE LATITUCE

* Qapp is a small residual between diabatic heating and thermal forcing by eddies



Qdiab climatology from ERA40 atlas (K/day)
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Response of the atmosphere (temp., winds)
to a prescribed heating anomaly

* Goal is to gain understanding as to what maintains a climatic anomaly
or perturbation (e.g., a positive phase of the NAO or El Nino
conditions averaged over many such events)

* The overbar represent the “normal” state while primes denote the
“anomalous” state

* Need to do this to increase our confidence that numerical models do
the right thing



Basic theory: Hoskins and Karoly (1981)

Annual and zonal mean of ©

Basic state (overbar) = zonal flow in thermal wind balance

Forcing: prescribed heat source
Frictional effects entirely neglected

Perturbations (Primes_) are geostrophic and obey linear
conservation of vorticity and heat ﬁentropy):

uté, + B’
uf, + v'8, + w'é,

P ibed
(ﬂﬂf g h:ezs;cgl)ue;ce



Basic theory: Hoskins and Karoly (1981)

e Because the zonal winds increase with height in Annual and zonal mean of U

Zonal mean wind Annual mean

the troposphere, the zonal advection term is more
important at upper than at lower levels.

Pressure (hPa)

'amqamsum_
s 8 8 ¥ 8 &8 & 8 % @

* At upper levels, vorticity conservation is a
stationary Rossby wave equation:

ag, + Bu =

Localized Rossby wave source = remote forcing of wind
anomalies (anticyclones generated above ascending regions)




Basic theory: Hoskins and Karoly (1981)

Annual and zonal mean of ©

* Simplification: we restrict ourselves to lower
levels and long waves (>1000 km) for which
vorticity conservation reduces to Sverdrup

balance:

r | S r
8 +[Br =fwy) e
David’s lecture

yesterday




Basic theory: Hoskins and Karoly (1981)

Annual and zonal mean of ©

* Qualitative understanding by looking under

which conditions we can simply consider
only one term on the l.h.s of the heat

equation:
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Basic theory: Hoskins and Karoly (1981)

Annual and zonal mean of ©

* Qualitative understanding by looking under
which conditions we can simply consider
only one term on the l.h.s of the heat

equation:




Basic theory: Hoskins and Karoly (1981)

Annual and zonal mean of ©

e Use the thermal wind to rewrite the heat
equation as:

Buoyancy frequency
N2 = g ae
6o dz

- ! - ! I v
fuv,” — fu, 0" +w'N?2 = Q.
Zonal advection Meridional Vertical advection
of heat advection of heat of heat



Basic theory: Hoskins and Karoly (1981)

VA Tropopause
* If zonal advection of heat dominates, then:
Deep
v~ QHQ/fH with  Ho = Q/Q).
(a few kms for shallow / : Sea]c
source, 5-10km for a qQ Surface

deep source)

— fi, 0" + w'N? =

Zonal advection Meridional Vertical advection
of heat advection of heat of heat




Basic theory: Hoskins and Karoly (1981)

Annual and zonal mean of U

* If meridional advection of heat dominates, then: .

v~ Q/fu. = QH,/fu with H, =u/u.

Zonal advection vierigiona Vertical advection
of heat advection of heat of heat




Basic theory: Hoskins and Karoly (1981)

Annual and zonal mean of ©

* If vertical advection of heat dominates, then: _

o' ~ fuw'/BHg = fQ/BN”Hg

fuv,’

Zonal advection
of heat

— fu,v’ +

Meridional
advection of heat

of heat




Basic theory: Hoskins and Karoly (1981)

e Key assumption: mechanism with smallest v’ will dominate (this is a
thermodynamic argument as the energy source for the motion is
heating and this must somehow be converted to kinetic energy)

(1) 'E.?F ~ (JHQ /fﬁ (if zonal adv. dominates)

/ e _
(2) = (L)ff U~ = (JHUJEI]C i (if meridional adv. dominates)

(3) -pf ~ f-u"r;f_,fj’HQ — f (12/ }’ :\TQHQ (if vertical adv. dominates)



Basic theory: Hoskins and Karoly (1981)

* The ratio of (3) to (1) or (2) is a non dimensional number:

10'
? =fgﬁf{ﬁNEHQH} }102 :
e
Where H — min(Hu’HQ) E.w . _.._é._/.._f(..,,.-af_.._.;_._._ ———
* y >>1 in midlatitudes (hor. adv. wins) 5 |
10°}
° V <<1 in Tropics (Vert' adv‘ WinS) 10-EiO 1i0 2;0 3‘0 450 5i0 Eib TIO 8i0 a0
Latitude

Hg = 6km, H,, = 3km, N = 10257t and @ = 10ms—!



Basic theory: Hoskins and Karoly (1981)

e v <<1 in Tropics (vert. adv. wins): upward motion is in ]
phase with the deep heat source. Sverdrup balance ®
requires this to have poleward motion below and thus a —
low pressure to the west at low levels (a) TROPICS

* v >>1 in midlatitudes: if deep heat source then +
meridional adv. wins at low levels and a low pressure is ®@ L
found to the east of the heat source. This implies sinking T 77T T
motion to accommodate Sverdrup balance. (b)  MID-LAT

¥

* v>>1in midlatitudes: if shallow heat source then zonal o

adv. wins at low levels and a cold/warm dipole is found C o LW

across the source. Sinking motion is again produced. (¢) MID-LAT (SHALLOW)



Surface
wind and
vertical
motion at
midlevel

Surface
pressure
and winds

Walker cell
(longitude-

height
plane)

“Gill's response” to heating (1980)
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Figure |, Solution for beating
SYMmeLnc about the equator in ihe
region |x| = 2 for decay factor
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(al Contours of vertical velocity w
{solid contours are 0, -3, (-6,
broken contour s —0r1) super-
imposed on the velocity fisld for the
lower layer. The fGeld is dominated
by the upward motion in the heating
region where it has approximately
the same shape as the heating
function. Elsewhere there is
subsidence with the same pattem
as the pressure field.

(b} Contours of perturbation
pressure o {contour imterval 0-3)
which is everywhere megative, There
15 a trough &t the squator in the
easterly régime fo the east of the
forcing region. Om the other hand,
the pressure in the wesferlies to the
weal of the forcing region, though
depressed, is high relative to lis
value off the eguator,

Two cyclones are found on the
north-west and south-wesd Aanks of
the farcing region.

(&) The meridionally integrated
flow elvorwing (i) stream function
contours, and (i} perturbation
presure. Mote the rising mation
in the heating reglon (whese thers
is a trough) and subsdence
elsewhere. The circulaiion in the
right-hand {Walker) cell is five
tumes that in each of the Hadbey
cells shown in (gL



Hendon & Hartmann’s experiments (1982)

* Response to a deep heat source (60
deg lon X 30 deg lat, vertically averaged heating

of 350Wm-2) centered at 15N
* Upward motion balances the heating

* Low pressure west of the source at

low levels

* Wave train propagating
northeastward is generated at upper

levels

Z at 310hPa (ci=20m)

w at 18N (ci Ilr[nbl/hlr_)

T at 928hPa (ci=1K)

e ([T
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Hendon & Hartmann’s experiments (1982)

* Response to a shallow heat source (60
deg lon X 30 deg lat, vertically averaged heating

of 350Wm-2) centered at 46N

* Downward motion over the source &

horizontal advection balances the

heating

 Strong low pressure east of the
source at low levels

 Strong remote response (anticyclone)

generated at upper levels

ﬁ( ;T i
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Z at 310hPa (ci=40m)

S

T at 928hPa (ci=1K)

4001,




Hendon & Hartmann’s experiments (1982)

Z at 310hPa (ci=20m) T at 928hPa (ci=1K)

* Response to a deep heat source (60
deg lon X 30 deg lat, vertically averaged heating

of 350Wm-2) centered at 46N

* Upward and equatorward motion

balances the heating & a cold | (“,
anomaly is produced(!) -u [ O

* Low pressure east of the source at
low levels

=Om)

400~

* Split wave train is generated at upper =
levels




Challenge...

e Use the previous knowledge to compare to more realistic
experiments and observations

e Reminder:

- ) e ) . — K Ox ~
< Qupp >=< Quiay >(—V. < v*0* >

Call this (either subgrid scale or
high frequency)



Gill's response in observations Jpperievel celation 2t the peak of the

North Pole
e T T

e Upper level pressure field is the negative
of the surface one in Gill’s solution

Prescribed heating anomaly

Rasmusson and
Wallace (1983)



Predictive skill
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The Smirnov et al. (2015) HR =% deg LR=1deg

(b) SST anomaly for model

experiments T F
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* Comparison of the response of an AGCM to | F | e 03
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velocities of:
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* Smirnov et al. produce, for a surface heat flux anomaly of 20Wm-2, a midlevel vertical

velocity of:

w =-0.01Pa/s

(40N SST anomaly in HR)

Thus the HR experiment generates midlevel
upward motion of similar magnitude as

subtropical forcing



Ascent in weather fronts is sensitive to the Gulf
Stream (Sheldon et al., 2017)
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Ascent in weather fronts is sensitive to the
Gulf Stream (Sheldon et al., 2017)

CNTL zi>7km

5km< zi < 7km

Initial release volume

2i<5km

Height (km)

Back trajectories
originating from
low levels in 12km
resolution runs




SMTH )

—~ 6
(.
}‘a
& A
) S\, =) T
5
7 7
. 77
N /,/
" 5 8 0] Y4
— > 5
- 2 T9—56
2
> 4 16
< ‘\%

Height (km)

1o
a

o N S » (o]
N | I | /

Ascent in weather fronts is sensitive to the

Gulf Stream (Sheldon et al, 2017)
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summary

* The observational record shows well defined “patterns” of co-variabilit%
between the ocean and atmosphere on monthly, interannual and possibly

decadal timescales. There is a rich range of behaviour between basins in
terms of temporal signatures and timescales.

* The standard theory of thermal forcing provides insight into how a
warmer/colder upper ocean affects wind and temperature distribution but
one must acknowledge the complexity of the link SST = diabatic heating

* There is suggestion that the midlatitude oceanic forcing increases with
spatial resolution and might become comparable in magnitude to the low
latitude oceanic forcing



