# Sea Surface Temperature Variability Along the Path of the Antarctic Circumpolar Current

ARIANE VERDY, JOHN MARSHALL AND ARNAUD CZAJA

Department of Earth, Atmospheric and Planetary Sciences and MIT/WHOI Joint Program in Oceanography, Massachusetts Institute of Technology, Cambridge, Massachusetts

#### ABSTRACT

The spatial and temporal distribution of sea surface temperature (SST) anomalies in the Antarctic Circumpolar Current (ACC) is investigated, using monthly data from the NCEP-NCAR Reanalysis for the period 1980-2004. Patterns of atmospheric forcing are identified in observations of sea level pressure and air-sea heat fluxes. It is found that a significant fraction of SST variability in the ACC can be understood as a linear response to surface forcing by the Southern Annular Mode (SAM) and remote forcing by ENSO. The physical mechanisms rely on the interplay between atmospheric variability and mean advection by the ACC. SAM and ENSO drive a low-level anomalous circulation pattern localized over the South Pacific, inducing surface heat fluxes (Fs) and Ekman heat advection (Fek) anomalies. A simple model of SST propagating in the ACC, forced with heat fluxes estimated from the Reanalysis, suggests that Fs and Fek are equally important in driving the observed SST variability. Further diagnostics indicate that SST anomalies, generated mainly upstream of Drake Passage, are subsequently advected by the ACC and damped after a couple of years. We suggest that SST variability along the path of the ACC is largely a passive response of the oceanic mixed layer to atmospheric forcing.

# 1. Introduction

In the Southern Ocean, sea surface temperature (SST) anomalies are observed to propagate eastward; it has been suggested that the signal encircles the globe in 8 to 10 years (White and Peterson 1996). This low-frequency variability arises from mechanical and thermodynamic forcing at the air-sea interface. Mechanisms controlling the spatial and temporal scales of SST variability in the Southern Ocean are not well understood, nor is the extent to which coupled ocean-atmosphere interactions play a role.

Remote forcing by El Niño-Southern Oscillation (ENSO) has been proposed as a trigger of SST variability (Cai and Baines 2001; White and Peterson 1996), through teleconnections with the tropics. ENSO has also been linked to sea ice extent variability around Antarctica (Yuan and Martinson 2000). In contrast, based on the result of their numerical model, Hall and Visbeck (2002) have argued that much of the variability in the Southern Ocean, including SST, is forced locally by the Southern Annular Mode (SAM), a dominant source of atmospheric variability in the Southern Hemisphere.

The role of ocean dynamics in the generation and maintenance of SST anomalies has also been examined (see, for example, Haarsma et al., 1999). The presence of the Antarctic Circumpolar Current (ACC), a strong eastward flow in a zonally periodic domain, can lead to interesting dynamics. Away from the frontal jets, the speed of the flow in the ACC is similar to the propagation speed of SST anomalies, and it is tempting to believe that the ACC is involved in carrying the anomalies. However, whether the signal will propagate significant distances depends on the rates of advection and damping. Decay of SST anomalies through interaction with the atmosphere typically occurs over a period of a few months (Frankignoul 1985). This implies that visual propagation of the signal would not be possible without a mechanism that maintains the anomalies in the face of damping.

Two explanations have been put forward for the observed persistence of SST variability: the first is based on the interplay between stochastic atmospheric forcing and ocean advection (Haarsma et al. 2000; Weisse et al. 1999), while the second relies on the growth of coupled modes of the oceanatmosphere system (Goodman and Marshall 1999, 2003; Qiu and Jin 1997; Talley 1999; White et al. 1998) that act against damping processes, thus increasing the longevity of SST anomalies. The main difference between the two mechanisms lies in the role of the ocean, whether passively responding to atmospheric forcing or actively involved in the

Corresponding author address:

Ariane Verdy, Massachusetts Institute of Technology, Rm 54-1419, 77 Massachusetts Ave., Cambridge MA 02139. (averdy@ocean.mit.edu)

ocean-atmosphere coupling.

The hypothesis of an active role for the ocean was motivated by the observation of a phase-locked propagation of sea level pressure (SLP) and SST anomalies (White and Peterson 1996). The phenomenon was dubbed the Antarctic Circumpolar Wave (ACW) by White and Peterson (1996) due to the apparent periodicity of the signal. SLP anomalies are observed to lag SST anomalies by 1/4 wavelength. This configuration suggests that atmospheric circulation is dynamically affected by oceanic feedbacks, in such a way that the anomalies grow in time. Following the idea of mid-latitude ocean-atmosphere coupling of Latif and Barnett (1994), White et al. (1998) proposed a mechanism in which SST anomalies are amplified by meridional advection of warm / cold air resulting from vortex stretching over warm / cold water. In the two-layer ocean model of Qiu and Jin (1997), the equivalent barotropic response of the atmosphere induces a wind stress curl downstream of SST anomalies, which are then reinforced though Ekman pumping in the ocean. Such scenarios involving ocean feedbacks are controversial, as there is little observational evidence for extra-tropical coupled modes. Cases where the oceanic feedbacks have a considerable impact on the local climate are more commonly found in the tropics (Kushnir et al. 2002).

Mechanisms which do not require ocean-atmosphere coupling have also been put forward to interpret interannual SST variability. The analytical model of Saravanan and McWilliams (1998) shows that in the presence of a mean oceanic flow, it is possible to obtain decadal variability and propagation in the SST signal as a passive response to atmospheric forcing. The theory is based on the idea of stochastic climate model proposed by Hasselmann (1976): lowfrequency variability arises in the ocean from a slow response to random atmospheric forcing. If an advective ocean interacts with a spatially fixed forcing which is stochastic in time, a preferred timescale will be excited in the ocean, determined by the ratio of the length scale of the forcing and the speed of the mean flow. Saravanan and McWilliams (1998) explained decadal variability in the North Atlantic as a result of this "advective resonance" mechanism, where SST anomalies advected by the Gulf Stream interact with a dipole pattern of atmospheric forcing, identified with the North Atlantic Oscillation (NAO). In the Southern Ocean, one can think of a similar set of circumstances, in which advection by the ACC combined with standing patterns of atmospheric forcing associated with -for example- ENSO and SAM, lead to decadal signals.

The advective resonance mechanism can explain the ACWlike variability in the models of Weisse et al. (1999) and Haarsma et al. (2000). In these numerical experiments, it is found that SST variability is excited by the dominant modes of variability in the atmosphere, which appear to have a wavenumber 2 or wavenumber 3 spatial pattern. The au-

#### A. VERDY, J.MARSHALL AND A.CZAJA

thors do not specifically identify the source of atmospheric variability behind these forcing patterns. Stochasticity of the forcing is a key element of the mechanism: there exists a frequency for which, by the time it takes an SST anomaly to travel from one pole of the forcing to the next, the forcing has reversed polarity, so that the anomaly created initially gets amplified. This process competes against damping of the anomalies, and is responsible for their apparently long persistence. It results in a visual propagation of the SST signal, in the direction of ocean advection. Advective timescales become amplified in the SST spectrum; the spectrum is easily found analytically for a sinusoidal spatial pattern (Saravanan and McWilliams 1998); Scott (2003) solved it for a periodic domain.

The motivation for the present study is to understand the physical mechanisms leading to observed interannual SST variability in the Southern Ocean. Our goal is to assess the role of ocean dynamics and atmospheric forcing; in particular we focus on the role of ENSO and SAM, the former because of its well-documented role in oceanic variability especially in the tropical Pacific but also in the tropical Atlantic (Czaja et al. 2002) and North Pacific (Alexander et al. 2002); the latter because it is dynamically similar to the NAO, which also is known to drive variability in the ocean (Marshall et al. 2001). We wish to put forward the view that SST variability along the path of the ACC can simply be understood as a passive response of the ocean mixed layer to SAM and ENSO forcing. Mechanisms involve primarily mean oceanic advection and anomalous surface heating/cooling through surface heat flux (Fs) and Ekman advection (Fek).

The layout of the paper is as follows: observations of the variability in the ACC are described in section 2. In section 3, a simple model of SST propagating in the mixed layer is forced with observed heat fluxes (Fs+Fek), in order to identify which components of the heat fluxes are important to explain the observed SST variability. The relevance of ENSO and SAM in driving those heat fluxes is presented in section 4. In section 5, the physical mechanism is related to the resonant advection mechanism of Saravanan and McWilliams (1998), and the spectral response of the ocean to ENSO and SAM forcing is examined. Ocean-atmosphere coupling is discussed in Section 6, and the main results are summarized in Section 7.

## 2. Observed variability in the ACC

## a. Methodology

We use the dataset from the National Centers for Environmental Prediction and the National Center for Atmospheric Research (NCEP-NCAR) Reanalysis (Kalnay et al. 1996) over the period 1980-2004. This period is chosen because it incorporates satellite based SST estimates: from 1982

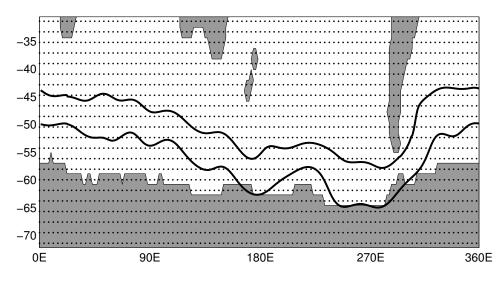



FIG. 1. Two geostrophic streamlines encircling the globe, delimiting the region of the ACC, plotted over the data grid points (from NCEP-NCAR Reanalysis); for clarity only half the points are shown in the zonal direction. Shaded areas represent land masses and sea ice.

onward, the Reanalysis employs Reynolds SST (analyzed data from the Advanced Very High Resolution Radiometer, AVHRR). Prior to the 1980s, SST observations were limited to ship and buoy measurements. Other fields used in this study, such as heat fluxes, are not directly constrained by observations and thus are subject to larger inaccuracies; for the more recent period, however, the modeled variables show similar statistics to that of the ECMWF Reanalysis (Sterl 2004), suggesting reasonable reliability.

Surface data is provided on a grid with a resolution of approximately  $2^{o}x2^{o}$ ; here we consider monthly averages. All time series are linearly detrended, but otherwise not filtered. The variability is computed by removing the mean seasonal cycle, calculated at every grid point. Departures from the seasonal cycle are defined as "anomalies".

The variability is analyzed along the path of the ACC. For this purpose, we estimate the position of the current using sea surface height data from the TOPEX-Poseidon altimeter. Following Karsten and Marshall (2002), the 4-year averaged dynamic sea surface height is compared with a reference geoid to evaluate the geostrophic streamfunction ( $\Psi$ ):

$$\Psi = \frac{gh}{f} \tag{1}$$

where f is the Coriolis parameter, g is the gravitational constant, and h is the sea surface height. The geostrophic flow is given by the gradient of  $\Psi$ :

$$(u_q, v_q) = \hat{z} \times \nabla \Psi \tag{2}$$

where  $\hat{z}$  is a unit vector in the vertical direction.

The mean path of the ACC is defined here as the region bounded by the two circumpolar streamlines that flow around the globe without intercepting land (Figure 1). Observations are averaged over the width of the current. This procedure is justified by the fact that the dominant structures of anomalous SST and surface heat fluxes, obtained from empirical orthogonal function (EOF) analysis, exhibit little variations across the ACC (not shown). Data falling on sea ice is excluded. Land masses and sea ice are shaded on Figure 1.

#### b. Along-stream variability of SST

First we examine the distribution of SST anomalies in time and space. In Figure 2, the variance of surface temperature anomalies along the path of the current is presented as a function of calendar month. Monthly SST anomalies have typical magnitudes of 1K; the interannual signal is thus not negligible compared to the seasonal cycle, which has a total amplitude of approximately 3K (not shown). Most of the variability occurs in the central Pacific, between 200E and 300E. At those latitudes the current flows closest to sea ice (Figure 1). It also coincides with the end of the storm track (Nakamura and Shimpo 2004), associated with enhanced wind variability. For these two reasons, the heat fluxes are expected to be more variable in this region, driving anomalous SST.

Seasonal variations are evident in Figure 2; the variance is strongest during the austral summer months (January through March). This time dependence is thought to result from variations in mixed layer depth: unlike in the Northern Hemisphere, atmospheric forcing in the Southern Hemisphere exhibits little seasonal variation; the amplitude of anomalous heat fluxes at the sea surface being constant throughout the year, the resulting SST anomalies are less im-

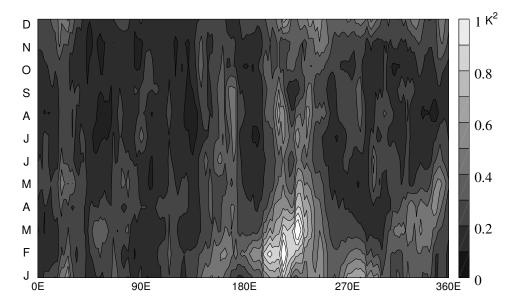



FIG. 2. Variance of SST anomalies along the ACC (x-axis is longitude), as a function of calendar month. The variability is greatest in the Pacific sector (200E to 300E); it is enhanced during the Austral summer when the mixed layer is shallowest.

portant when the mixed layer is deep, which happens in the winter when mode waters are forming (Levitus and Boyer 1994).

The dominance of SST variability in the Pacific was also observed by Cai and Baines (2001), who relate it to the location of the Pacific-South America pattern, a surface pressure anomaly. Yuan and Martinson (2000) notice that sea ice variability is strongest in the Pacific.

## c. Along-stream covariability of SST and SLP

The SST variability is now related to sea level pressure (SLP) fluctuations through a maximum covariance analysis (mca) of streamline-averaged anomalies. This technique also called singular value decomposition is used to identify the orthogonal modes of variability in two covarying fields (Bretherton et al. 1992). It is performed here on monthly data; for the 24 year period considered, the analyzed time series have 288 data points.

Figure 3 shows the patterns and their associated time series for the two leading modes of covariability, accounting for 63% and 21% of the squared covariance, respectively. The first mode accounts for 20% of the SST variance, and 24% of the SLP variance (as a reference the first EOFs of streamline-averaged SST and SLP explain 22% and 27% of their respective variance). The time series associated with the first mca mode will be subsequently referred to as SSTmca and SLP-mca. The second mode, which has weaker amplitude, accounts for 11% and 21% of SST and SLP variance, respectively. These spatial patterns are essentially localized in the Pacific basin, both for temperature and pressure anomalies.

For both modes, the SLP maximum is slightly to the east of the SST maximum; in the Pacific they are separated by roughly 45 degrees in longitude. A simple explanation is that the advection of air around the high pressure center is reinforced by advection of air around the low pressure anomaly at 200E; both drive ocean-atmosphere exchanges of heat around 250E, which is the location of the SST-mca maximum. The spatial configuration supports the idea that heat fluxes induced by anomalous low-level atmospheric circulation is involved in the generation of SST anomalies. Similar analysis with covarying SST and meridional winds show that the position of maximum winds does indeed coincide with the SST maximum (not shown).

We also find that the covariance between SST-mca and SLP-mca is a maximum when the pressure signal leads by one month. This time lag is consistent with the scenario of a passive response of the ocean to atmospheric forcing, the ocean taking a few weeks to adjust to the change in heat fluxes. This result suggests that SST is driven by the SLP mode, and not vice-versa. Based on these observations, we claim that SST variability in the ACC is forced by a low-level atmospheric pattern localized in the Pacific.

## d. Propagating modes of SST variability

From the mca, we find that the SLP signal is essentially standing; its autocorrelation has an e-folding timescale of only 1 month. For this reason it is hard to obtain evidence for the propagation of SLP anomalies, and indeed our analysis revealed no significant indication of propagation. On the

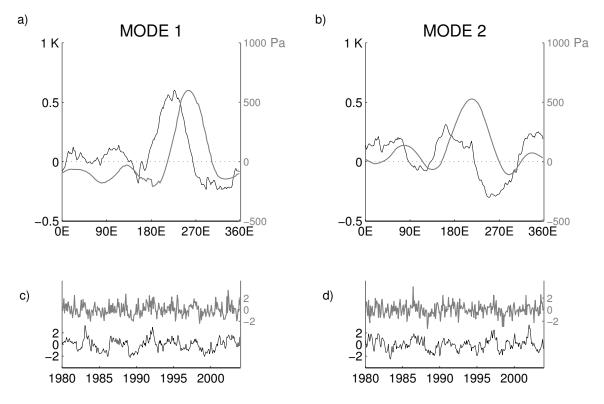



FIG. 3. First and second modes of variability of SST (black) and SLP (gray) showing the maximum covariance along the ACC. The spatial patterns for mode 1 and 2 are presented in a) and b) respectively. Mode 2 is upstream of mode 1 and has weaker amplitude. The amplitude shown corresponds to a typical change in SST (in K) or SLP (in Pa) for a 1 standard deviation of the associated time series. The normalized time series associated with the spatial patterns are presented in c) and d).

other hand, we find that SST modes 1 and 2 are not independent, but correspond to a single propagating mode. The second mode leads the first by approximately 1 year (correlation not shown here). The propagation of the SST anomalies is highlighted by performing a lagged correlation of the SST-mca mode with the time series of observed SST at every longitude, along the path of the ACC (Figure 4). On the figure, shaded regions indicate where correlations are significant at the 95% level; we take 3 months as a null hypothesis for midlatitude SST decorrelation time, and thus consider Nt/3 degrees of freedom for a time series containing Nt data points.

At zero lag, following the horizontal dashed line, the pattern of Figure 3 is retrieved: the amplitude of the signal is greatest in the central Pacific. As the lag increases, the peak correlation moves to the right, indicating that the pattern of anomalous temperature has moved eastward. From the slope of the correlation bands on Figure 4 we infer the propagation speed to be 8 cm/s. This value coincides with the mean geostrophic velocity of the ACC, estimated from the geostrophic streamfunction defined in (2). The meridional gradient of  $\Psi$  calculated from the two circumpolar streamlines shown in Figure 1, gives the geostrophic velocity averaged across the current; the average of this velocity along the current is 8 cm/s. This suggests that the SST anomalies are passively advected by the current.

Significant correlations appear to be centered around the Pacific basin and limited to  $\pm 2$  years lag. The fact that higher correlations are found downstream (positive lag) than upstream of the Pacific suggests that anomalies originate from that region and are then advected away. In addition, a superposition of wavenumbers 1 and 2 appear to dominate the spatial structure. In the next section, we show that these characteristics can be understood as a response of the mixed layer to mean oceanic advection and anomalies in surface heat flux and Ekman advection. In sections 4 and 5 we will argue that the wavenumbers 1 and 2 reflect SAM and ENSO forcing.

# 3. A diagnostic model of SST anomaly

In order to study the extent to which the observed SST variability can be explained by observed heat fluxes, we employ a 1-dimensional model of SST propagating in the ACC. It is forced by observed heat fluxes.

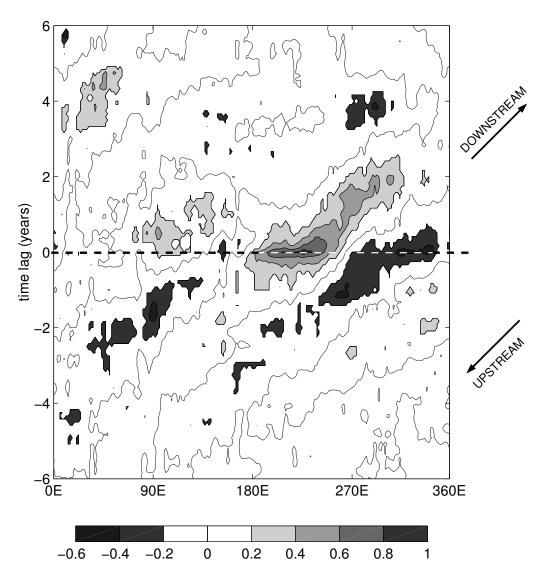



FIG. 4. Lagged correlation of observed SST with the first SST-mca mode (from Figure 3). At zero lag, following the horizontal dashed line, the pattern pf Figure 3a is retrieved. Lighter shades of gray indicate positive correlations and darker shades, negative correlations; only values that are significant at the 95% level are shown. The location of the maximum correlation ( $\sim 210E$  at zero lag) is displaced to the right as lag increases, indicating eastward propagation of the signal. The speed of propagation is estimated from the Figure to be 8 cm/s, which coincides with the mean advection velocity of the ACC. If they persisted, anomalies would encircle the globe in approximately 10 years.

#### a. Heat flux variability

Turbulent surface heat fluxes occur via exchange of latent and sensible heat at the air-sea interface. The sensible heat flux and latent heat flux are obtained from the Reanalysis, and summed. As a preliminary diagnostic, we calculated the surface heat fluxes from the linearized bulk formulae, and found the calculated values to be very similar to those of the Reanalysis. The two components of the linearized bulk formulas contributing to heat flux variability have similar magnitude; one is due to anomalous wind and the other is due to anomalous temperature and moisture at the sea surface. Together the two components add up to surface anomalous heat fluxes with a standard deviation of 12 to 28 W/m<sup>2</sup>, depending on the position along the current.

In addition, we also consider heat fluxes resulting from anomalous Ekman advection in the upper ocean, acting on mean temperature gradients (especially in the meridional direction). We estimate Ekman fluxes from wind stress anomalies from the Reanalysis:

$$F'_{ek} = \rho c_P \left( \vec{\mathbf{u}'}_{ek} \cdot \nabla \overline{T} \right) \tag{3}$$

where  $\vec{\mathbf{u'}}_{ek} = -\frac{1}{\rho f} \left( \hat{k} \times \vec{\tau'} \right)$  is the anomalous Ekman transport in the ocean;  $\vec{\tau'}$  is the wind stress anomaly and  $\nabla \overline{T}$  is the seasonally varying SST gradient; f is the Coriolis parameter;  $\rho$  and  $c_p$  are the density and heat capacity of seawater, respectively.

# b. Description of the model

The model is set-up in a similar fashion as the stochastic model with ocean advection of Saravanan and McWilliams (1998), but in our case the random forcing is replaced by the observed heat fluxes described above. Here we consider oceanic advection along the x-axis, which we choose to be parallel to the path of the ACC defined in Section 2. Heat flux data is averaged meridionally over the width of the current.

The temperature equation in the mixed layer, linearized around the mean seasonal cycle, is:

$$\frac{\partial}{\partial t}T' + \bar{u}\frac{\partial}{\partial x}T' = \frac{1}{\rho c_P h}\left[-\alpha T' + (F'_{ek} + F'_s)\right] \quad (4)$$

For the advective velocity, we take the mean geostrophic velocity of the ACC,  $\bar{u} = 8$  cm/s. This value was determined as the temporal and spatial average of the along ACC velocity calculated from TOPEX-Poseidon data (section 2a). The depth of the mixed layer, h, is assumed constant with a value of 100 m. From Levitus climatology, we know that h is spatially inhomogeneous, and that it varies seasonally from about 50 m in the austral summer, to more than 500 m in the winter in convective locations; however we found

that taking a constant value does not qualitatively affect the results. Similarly, choosing a different value for h (still constant) affects the magnitude but not the patterns of simulated SST anomalies. By considering uniform velocity and uniform depth, we ensure that the transport is constant along the current, assuming that the bounding streamlines separation does not vary.

The damping parameter,  $\alpha$ , represents the terms that are not explicitly included in (4): vertical entrainment and horizontal diffusivity. We choose a value of  $\alpha = 20$  W/m<sup>2</sup>/K for this tunable parameter, which corresponds to a damping timescale of 9 months for a mixed layer depth of 100 m. This value gives the most realistic persistence of SST anomalies. The temperature equation is integrated numerically; it is discretized using a forward in time, upwind in space scheme. This scheme leads to numerical damping, but we find it to be negligible compared to the timescale of damping to the atmosphere ( $\alpha^{-1}$ ). Initially, the anomalous SST field is set to observed values for January 1980.

## c. Simulated SST variability

The simulated SST is presented in Figure 5 as a function of longitude and time. It was obtained by introducing the observed heat flux and Ekman advection of heat into (4). The high-frequencies of the forcing are filtered out by the model; this is explained by the slow oceanic response (causing the reddening of the SST spectra in Hasselmann's theory). For comparison, the observed SST field is also presented in Figure 5 as a function of longitude and time. A visual examination of the two diagrams reveals that the model captures the propagation and timing of the observed basin-scale SST. Eastward propagation in the modeled field occurs at the prescribed velocity (8 cm/s). The agreement between simulated and observed fields is particularly good in the Pacific and Western Atlantic.

A quantitative comparison of the simulation with the observations is obtained by cross-correlating their respective EOFs. The first mode of variability of the observed SST is strongly peaked around 230E (in the Pacific) and accounts for 22% of the variance. For the simulated SST, the first EOF, accounting for 32% of the variance, has a different spatial pattern; the peak centered in the Pacific is retrieved in the second EOF, which accounts for 27% of the variance. The correlation between EOF1 of the observations and EOF2 of the simulation is  $\rho = 0.48$ .

Differences between the two fields can be explained by the simplicity of the model, which does not represent uncertainties in the forcing, eddy turbulence, vertical entrainment and other ocean dynamics. These processes are responsible for spatial and temporal small-scale variability, not captured by the model.

Figure 6 shows that both the simulated and observed

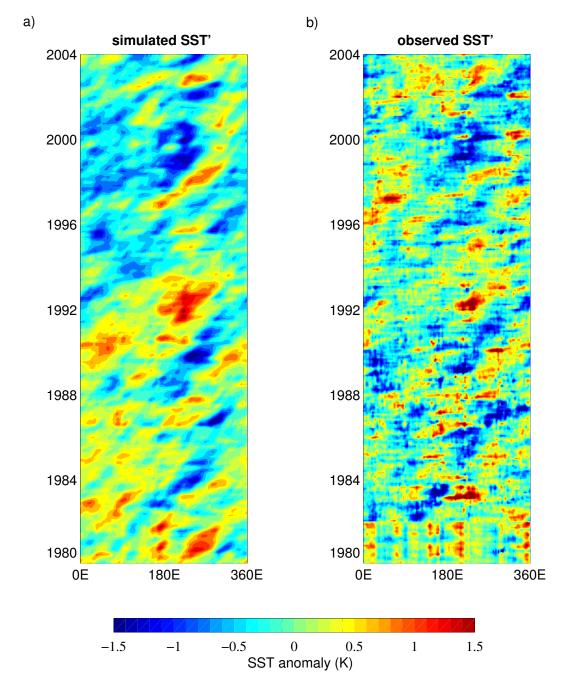



FIG. 5. Time-longitude diagrams of a) the SST simulated from the heat fluxes, estimated from the Reanalysis and introduced in Equation 4; b) observed SST from the Reanalysis. The simulated field captures the propagation and timing of the observations.

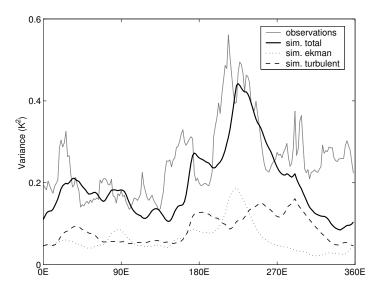



FIG. 6. Variance of SST as a function of longitude (along the path of the SST). Gray line: observations; dotted line: simulated from Ekman heat fluxes; dashed line: simulated from surface heat fluxes; black solid line: simulated from Ekman + surface heat fluxes.

fields exhibit more variability in the Pacific basin. Since the model's mixed layer depth is constant in space, this enhanced variability must arise from spatial inhomogeneity of the surface forcing. Inspection of the heat fluxes does indeed reveal that their variance is greater in the Pacific than in other basins, consistent with the analysis of Section 2c. The amplitude of the simulated variance is sensitive to the choice of  $\alpha$ ; stronger damping induces weaker variability. The value  $\alpha = 20 \text{ W/m}^2/\text{K}$  leads to simulated SST variance which is similar to the observations.

The relative importance of the surface heat fluxes versus Ekman advection can be assessed by performing simulations with each component separately. SST driven from Ekman fluxes alone, as well as SST driven from surface fluxes alone, have more variability in the Pacific (Figure 6). In both cases, SST variance is considerably less than when the total heat flux field is used. This indicates that Ekman and surface fluxes reinforce rather than cancel one another. The magnitude and variance of simulated SST anomalies is similar in both cases, suggesting that Ekman and turbulent fluxes are each responsible for approximately 50% of the SST variability.

# 4. Mechanisms of external forcing

# a. SAM and ENSO

Since we have demonstrated in section 3 that Fs+Fek is the main driver of SST variability along the ACC, we now investigate what physical mechanisms drive the observed heat fluxes. From the maximum covariance analysis presented in Section 2, a coupled system seems unlikely, since the SLP variability tends to lead in time the SST variability. The other possible scenario is one in which the ocean reacts passively to the forcing. In this case one can ask: what are the primary sources of atmospheric variability?

We examine two sources of atmospheric forcing: ENSO and SAM. ENSO is a coupled ocean-atmosphere phenomenon originating in the tropics. It is thought to reach the ACC via atmospheric teleconnections: possible mechanisms include propagation of the signal by atmospheric Rossby waves (Karoly 1989), and changes in the Ferrell cell (Liu et al. 2002). We use Niño3 as an index for ENSO-related variability (Cane et al. 1986); it is calculated from the SST averaged between 5S and 5N, from 150W to 90W. Most of its energy is in the 3 to 7 years period band (Wunsch 1999).

SAM is an important source of monthly and interannual variability in the atmosphere, also referred to as the Antarctic Oscillation (AAO). In its positive phase it is characterized by a contraction of the polar vortex (Thompson and Wallace 2000), which is expressed at the sea surface by an enhancement of the westerlies in the region of the ACC. A measure of the strength of SAM is given by the "SAM index", calculated from the principal component of the first mode of variability of the 850 hPa field between 20S and 90S (Thompson and Wallace 2000). On timescales of a month or longer, it has a white spectrum.

The two indices are found to be strongly correlated with the SST signal. The SAM and Niño3 indices are plotted in Figure 7, along with the time series of SST-mca. One observes a close correspondence between all time series, with the lagged cross-correlations peaking when SAM and ENSO lead in time; this is consistent with an atmospheric driving of SST variability. It is found that the correlation with Niño3 has a coefficient of 0.53, when the temperature lags

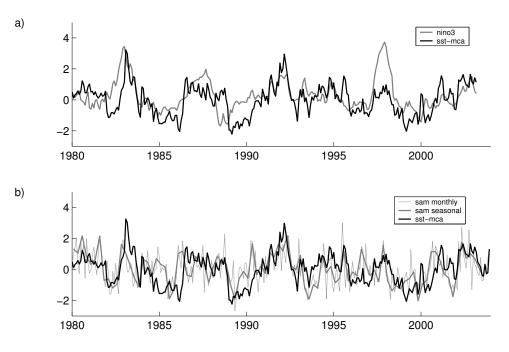



FIG. 7. Time series of SST-mca, black line, in both panels. a) Niño3 (gray line) and b) SAM index (thin gray, monthly data, thick gray, seasonal averages). Each index is normalized.

by 1 month. The correlation with SAM has a coefficient of -0.38, when the temperature lags by 1 month; the correlation is -0.47 when seasonal averages are considered. Together ENSO and SAM explain approximately 45% of the leading mode of SST covarying with the atmosphere (the fraction of variance explained is given by the square of the correlation coefficient). In such estimates, we have assumed that the annular mode is independent of ENSO. This hypothesis seems reasonable as they have very different dynamics, and we were unable to show any dependence of one index upon the other.

The SLP-mca mode is also found to be associated with SAM and ENSO. The correlation coefficient between SLP-mca and ENSO is 0.33, and with SAM it is -0.58 (0.43 and -0.65 for seasonal averages).

ENSO and SAM are both found to affect the low-level atmospheric circulation in the South Pacific. The patterns can be seen in Figure 8, showing the correlations of monthly SLP anomalies (from the Reanalysis) with the Niño3 index and the SAM index. In both cases SLP variations are found along the path of the ACC, allowing for possible interactions between ocean dynamics and atmospheric forcing pattern. The geostrophic flow induced by the anomalous pressure is expected to drive SST anomalies by advecting cold / warm air across the temperature front of the ACC.

The surface pressure pattern associated with SAM has an annular shape, but it is not exactly zonally symmetric: it extends to lower latitudes in the Pacific sector (Figure 8). In that same region, the ACC streamlines bend toward the continent as the current flows through Drake Passage. As a result, the ACC intercepts a zone of strong pressure gradients, which will affect the heat fluxes in the ocean. In contrast, the ENSO teleconnection is more localized to the eastern Pacific sector. El Niño events are associated with a high pressure center (low pressure during La Niña).

# b. SAM and ENSO heat flux patterns

Here we analyze the spatial patterns associated with heat fluxes induced by ENSO and SAM, in order to illuminate their role in the generation of SST anomalies. This is done by regressing the heat fluxes onto the SAM index and Niño3 index. The resulting spatial patterns are shown in Figure 9. These patterns correspond to the heat fluxes occurring during an anomalous index with an amplitude of 1 standard deviation  $(1\sigma)$ . The spatial pattern multiplied by the index time series, gives the actual observed heat fluxes.

As evidenced in Figure 9, the heat flux variability induced by ENSO occurs principally in the Pacific sector, which is consistent with the location of the ENSO-driven low-level circulation pattern (Figure 8). In an El Niño year, anomalous meridional advection along the path of the ACC leads to surface warming in the central Pacific, and cooling in the western Pacific and downstream of Drake Passage. At the same time, Ekman advection in the ocean induces warming in the Pacific sector. The signs of the fluxes are reversed during a La Niña episode. Surface heat fluxes and Ekman heat fluxes interact constructively in the central Pacific; this

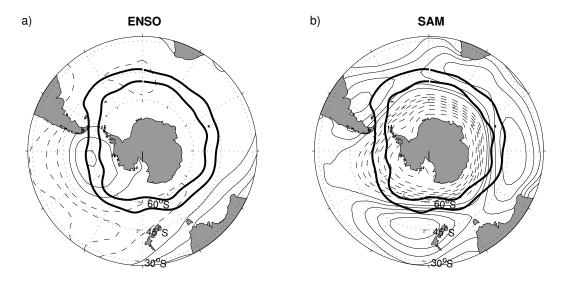



FIG. 8. Correlation of SLP with a) Niño3 index and b) SAM index; solid (dashed) contours indicate positive (negative) correlations. The contour interval is 0.1; the zero contour is not drawn. Thick black lines show the mean position of the ACC as defined in Section 2. In the ACC band, both signal exhibit a strong pressure anomaly in the South-East Pacific.

region coincides with the location where SST variance is observed to be maximum.

SAM displays a similar pattern of surface heat fluxes, with a tripole structure in the Pacific sector. This is superimposed on a zonally symmetric signal associated with Ekman heat fluxes. The latter is efficient in driving cooling of the upper ocean in the ACC band during a positive phase of the annular mode. Once again, the two patterns of simultaneous variability enhance each other in the central Pacific.

## c. SAM and ENSO impact on SST

We now assess the relative importance of the heat fluxes driven by ENSO and SAM, in explaining the observed SST. The heat fluxes regressed on ENSO and SAM are introduced in the flux model of Section 3. We construct a matrix of the forcing: spatial patterns, seasonally varying, multiplied by the index time series (SAM-index and Niño3). Note that here, the spatial patterns are calculated for each of the four seasons, to account for the fact that heat fluxes are different in the summer than in the winter (Figure 9 showed the annual mean patterns).

Simulated SST are presented in Figure 10. The simulation with both fields is simply the sum of the simulation with ENSO and the simulation with SAM, since the model is linear. The simulation with ENSO reproduces the strong events of 1982-83 and 1997-98. However, it seems as though most of the higher frequency variability is induced by SAM. Both sources of external forcing are associated with SST variability in the Pacific basin.

We can test the relevance of the simulated field to the observations, by comparing their first EOF. The correlations between the time series are:  $\rho = 0.57$  for the ENSO-only simulation,  $\rho = 0.63$  for the SAM-only simulation, and  $\rho = 0.70$  for the simulation with both fields. The best simulations are obtained with both SAM and ENSO induced heat fluxes, which means that they are both important in creating the observed SST variability.

In all three cases, the correlation is higher than that obtained for the simulation with the total heat fluxes (Section 3c). This implies that the mode of variability along the ACC which has a spatial pattern centered in the Pacific sector is better reproduced with ENSO and/or SAM induced forcing. It suggests that other components of the forcing reduce the quality of the simulation. These results support our hypothesis, that SAM and ENSO are two drivers of SST variability along the ACC (Section 4a) and that their effect is concentrated in the Pacific basin (Figure 8).

#### 5. Spectral response of SST to stochastic forcing

Having identified SAM and ENSO as the dominant sources of atmospheric forcing, we now relate their impact on SST to the advective resonance mechanism proposed by Saravanan and McWilliams (1998), which can be extended in periodic domains such as the ACC region (Weisse et al. 1999; Scott 2003). We begin by reviewing some important concepts of the mechanism; a more complete discussion is found in Weisse et al. (1999).

#### a. Resonant advection mechanism

The ocean's response to stochastic forcing, in the presence of a mean oceanic flow, depends on the advection

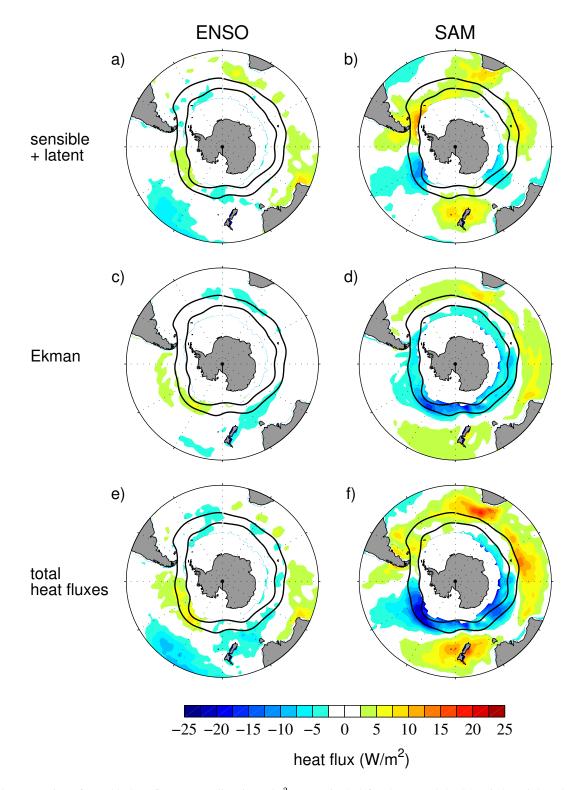



FIG. 9. Regression of monthly heat fluxes anomalies (in W  $/m^2$ ) onto Niño3, left column, and the SAM index, right column. a) and b) show the surface turbulent heat fluxes (sensible + latent); c) and d) show the Ekman heat fluxes; e) and f) show the sum of the two components (surface + Ekman). Heat fluxes are defined as positive when into the ocean.

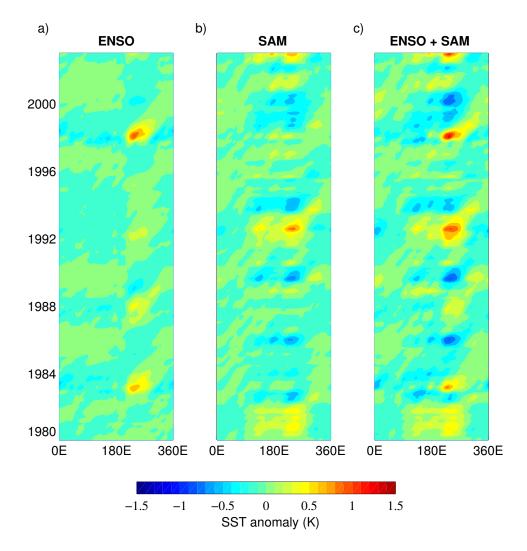



FIG. 10. Time-longitude diagrams, showing the SST simulated from the heat fluxes regressed on a) Niño3, b) SAM, c) Niño3 + SAM.

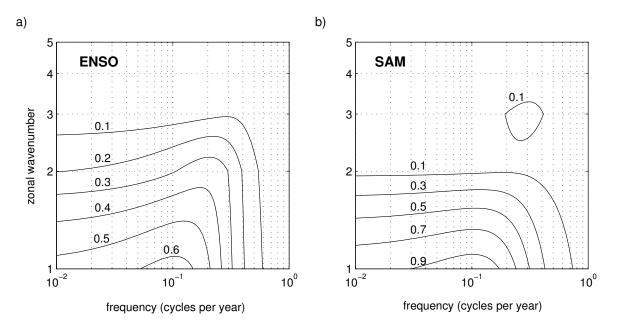



FIG. 11. Wavenumber-frequency spectrum for SST, as predicted from Equation 4, assuming a white-noise forcing with the spatial pattern of a) the heat fluxes regressed on ENSO, as shown in Figure 9e; and b) the heat fluxes regressed on SAM, as shown in Figure 9f. Both spectra are normalized by the peak value of the SST spectrum in b). The ocean response is expected to be at low wavenumbers, with a dominant period of 10 years. Note that the spectrum is continuous in  $\omega$  but discrete in k. The spectra were calculated with  $\lambda = \alpha \simeq (9 \text{ months})^{-1}$ .

speed and the timescale for the dissipation of SST anomalies. In the model of Section 3, we introduced a damping term,  $\alpha$ ; that term did not include the dissipation of temperature anomalies via air-sea heat fluxes, which was already accounted for in the  $F'_s$  term of (4) ( $F'_s$  includes both the effects of atmospheric forcing and oceanic feedbacks). The total damping, including air-sea heat fluxes, will be represented by the symbol  $\lambda$ ; it is equivalent to the  $\lambda_{eff}$  of Equation 9 in Saravanan and McWilliams (1998).

The temperature equation (4) can be rewritten (dropping the primes)

$$\frac{\partial}{\partial t}T + \bar{u}\frac{\partial}{\partial x}T = -\lambda T + F \tag{5}$$

where F represents the surface and Ekman heat flux forcing,  $F'_{ek}$  and  $F'_s$  in (4); the factor  $\rho c_P h$  is absorbed in the variables  $\lambda$  and F.

From (5) we can relate the SST spectrum  $(E_T)$  to the spectrum of the forcing  $(E_F)$ ,

$$E_T(\omega, k) = \frac{E_F(\omega, k)}{(\omega - k\bar{u})^2 + \lambda^2}$$
(6)

where the  $(k, \omega)$  spectrum  $E_X$  is defined as  $E_X = \langle \hat{X}\hat{X}^* \rangle$ ;  $\bar{u}$  is the mean advective velocity, k is the spatial wavenumber,  $\omega$  is the angular frequency and brackets denote ensemble average. If the forcing is a white noise, then  $E_F = E_F(k)$ ; it does not depend on the frequency. In that case, (6) predicts a peak in the ocean  $k\omega$  spectrum at the frequency  $\omega = k\bar{u}$ . If the forcing has a dominant wavenumber  $k_0$ , the peak is located at  $\omega = k_0 \bar{u}$ , corresponding to an advective timescale of

$$T_{adv} = \frac{2\pi}{k_0 \bar{u}} \tag{7}$$

This timescale appears as the preferred period of oceanic variability, even though the atmospheric forcing is white. It corresponds to the Fourier mode for which the reversal of the polarity of the forcing (half a period) takes the same time as the advection of SST anomalies between two poles of the sinusoidal forcing pattern (half a wavelength); anomalies created under one pole thus get amplified under the next pole. This results in SST anomalies that are long-lived, propagate at the speed of the ocean current and have a preferred timescale in the SST spectrum. All other frequencies (Fourier modes) interact destructively with the ocean.

In a periodic domain such as the Southern Ocean, the resonance mechanism would lead to infinite SST response if there were no damping or friction; the original scenario of anomalies propagating in a bounded domain (Saravanan and McWilliams 1998) is a "finite resonance", since the SST response would remain finite even if the damping vanished.

In the ocean,  $\bar{u}$  is rather small, typically a few centimeters per second.  $k_0$  is also small when large-scale forcing is considered. Thus  $T_{adv}$  is large, which means that the oceanic variability induced by stochastic forcing has a low frequency, ranging from interannual to decadal variability.

#### b. Spectral response to ENSO and SAM

To relate SAM and ENSO forcing to the advective resonance mechanism, we have recontructed the  $(k, \omega)$  forcing spectrum of SAM and ENSO, from the heat flux patterns shown in Figure 9. To do so, we have written the forcing spectrum as a product  $E_F(\omega, k) = E_F(\omega)E_F(k)$ , in which  $E_F(k)$  is simply obtained from a Fourier transform of the (streamline averaged) pattern shown in Figure 9e,f, and in which  $E_F(\omega)$  is taken as a white noise (with amplitude determined from a linear regression). The latter procedure is justified from a study of the time series associated with the patterns in Figure 9e,f which have a decorrelation timescale of about a month (not shown).

The resulting spectra are presented in Figure 11. In both spectra, most of the variability occurs at low wavenumbers; this reflects the spatial pattern of the total heat fluxes, for which k = 1, 2 are the dominant Fourier components. Both ENSO and SAM spectra show enhanced power at a timescale of about 10 yr for k = 1 and 5yr for k = 2 (note that the spectra are continuous in  $\omega$  but discrete in k), both being in agreement with (7). It appears that SAM and ENSO contribute equally to the SST variability.

The short dataset does not warrant a direct comparison with observed spectra but the results obtained in Figure 10 are in qualitative agreement with the spatio-temporal characteristics of SST discussed in Section 2c. Decadal variability at low wavenumbers also appears to characterize the SST simulated with ENSO and SAM heat fluxes (Figure 10). In particular, a k = 1 feature is evident.

## 6. Ocean-atmosphere coupling

In agreement with the modeling results of Weisse et al. (1999) and Haarsma et al. (2000), the present analysis suggests that low-frequency SST variability in the ACC can arise from the resonant response of the ocean to stochastic atmospheric forcing. Such a mechanism does not require ocean-atmosphere coupled dynamics. The identification of ENSO and SAM as drivers of anomalous low-level circulation further supports this hypothesis; SAM exists independently of ocean-atmosphere coupling, and the ENSO signal in the Southern Ocean is not affected by local ocean dynamics.

Since ENSO and SAM are the main generators of temperature anomalies along the path of the ACC (Section 4), we suggest that SST variability in the Southern Ocean results primarily from a passive response of the oceanic mixed layer to atmospheric forcing, ocean-atmosphere coupling playing a second-order role.

#### 7. Summary and conclusions

The spatial and temporal distribution of SST anomalies in the ACC is studied using observations and conceptual models. Low-frequency variability in the ocean is related to fixed patterns of variability in SLP and anomalous surface forcing: sensible and latent heat fluxes (Fs) and Ekman advection (Fek).

In summary, our main results are:

- (i) A simple model of SST including mean advection and driven by observed anomalous surface forcing (Fs + Fek) provides a zero order picture for SST variability along the ACC;
- (ii) SAM and ENSO have a strong signature in Fs and Fek over the eastern Pacific, and act as generators of SST anomalies in that sector. The SST anomalies are subsequently advected by the mean current;
- (iii) The damping of anomalies is large enough that they can be followed for only a couple of years. We found no indication of global propagation along the ACC.

The mechanisms investigated do not rely on ocean-atmosphere coupling. The generation, propagation and damping of SST anomalies can be understood as a passive response of the ocean mixed layer to stochastic atmospheric forcing. Coupled ocean-atmosphere models might shed further light on the role of ocean-atmosphere interactions in Southern Hemisphere climate variability, although our results suggest that the teleconnection with ENSO and the subtle asymmetry in the surface pattern of SAM need to be reproduced accurately in order to simulate the surface heat fluxes in the Pacific basin.

Examination of the heat fluxes along the ACC reveals that the air-sea interaction occurs mainly in the Pacific sector. In this region we also observe mode water formation. Subantarctic Mode Water (SAMW) results from deepening of the mixed layer in the winter; in the Southeast Pacific it is exported as Antarctic Intermediate Water (Sloyan and Rintoul 2001) and plays an important role in the meridional overturning circulation. Rintoul and England (2002) have argued that SAMW variability in driven principally by Ekman transport, as opposed to local air-sea fluxes. The present study suggests that both mechanisms are important sources of oceanic variability.

Temperature variability also has implications for the interannual variability of  $CO_2$  fluxes in the Southern Ocean. Heat fluxes affect the air-sea exchanges of gas by changing their solubility in seawater; because of its reaction with seawater, oceanic  $CO_2$  equilibrates slowly with atmospheric concentrations. Decadal variability in  $CO_2$  fluxes is detected in data from the high resolution global model of biogeochemical cycles of McKinley et al. (2003); it is likely that it arises from stochastic heat fluxes, as in the case of SST. This could be investigated using the framework proposed in this study.

Acknowledgments. The NCEP-NCAR Reanalysis data is provided by the IRI/LDEO Climate Data Library on their website http://ingrid.ldeo.columbia.edu/. We thank Fabio d'Andrea for helpful discussions during the preparation of the manuscript, and two anonymous reviewers for valuable comments and suggestions. This work was supported by the Office of Polar Programs of the National Science Foundation and the Office of Global Programs of the National Oceanic and Atmospheric Administration.

#### REFERENCES

- Alexander, M., I. Blade, M. Newman, J. Lanzante, N. Lau, and J. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air-sea interaction over the global oceans. *J. Climate*, **15**, 2205–2231.
- Bretherton, C., C. Smith, and J. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. *J. Climate*, **5**, 541–560.
- Cai, W., and P. Baines, 2001: Forcing of the Antarctic circumpolar wave by El Niño-Southern Oscillation teleconnections. J. Geophys. Res, 106(C5), 9019–9038.
- Cane, M., S. Zebiak, and S. Dolan, 1986: Experimental forecasts of El-Niño. *Nature*, **321**, 827–832.
- Czaja, A., P. van der Vaart, and J. Marshall, 2002: A diagnostic study of the role of remote forcing in tropical Atlantic variability. J. Climate, 15, 3280–3290.
- Frankignoul, C., 1985: Sea surface temperature anomalies, planetary waves, and air-sea feedback in the middle latitudes. *Review* of Geophysics, 23, 357–390.
- Goodman, J., and J. Marshall, 1999: A model of decadal middlelatitude atmosphere-ocean coupled modes. J. Climate, 12, 621– 641.
- Goodman, J., and J. Marshall, 2003: The role of neutral singular vectors in midlatitude air-sea coupling. J. Climate, 16, 88–102.
- Haarsma, R., F. Selten, and J. Opsteegh, 2000: On the mechanisms of the Antarctic circumpolar wave. J. Climate, 13, 1461–1480.
- Hall, A., and M. Visbeck, 2002: Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J. Climate, 15, 3043–3057.
- Hasselmann, K., 1976: Stochastic climate models. Part 1. Theory. *Tellus*, 28, 473–485.
- Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc, 77, 437–471.
- Karoly, D., 1989: Southern Hemisphere circulation features associated with ENSO events. J. Climate, 2, 1239–1252.
- Karsten, R., and J. Marshall, 2002: Constructing the residual circulation of the ACC from observations. J. Phys. Oceanogr, 32, 3315–3327.
- Kushnir, Y., R. Seager, and J. Miller, 2002: A simple coupled model of tropical Atlantic decadal climate variability. *Geophys. Res. Lett*, 29, 48.1–4.

- Latif, M., and T. Barnett, 1994: Causes of decadal climate variability over the North Pacific and North America. *Science*, 266, 634–637.
- Levitus, S., and T. Boyer, 1994: World Ocean Atlas 1994, Volume 4: Temperature. NOAA Atlas NEDSIS 4, U.S. Department of Commerce, Washington D.C.
- Liu, J., X. Yuan, D. Rind, and D. Martinson, 2002: Mechanism study of the ENSO and southern high latitude climate teleconnections. *Geophys. Res. Lett*, **29**, 1679.
- Marshall, J., and Coauthors, 2001: North Atlantic climate variability: Phenomena, impacts and mechanisms. *International Journal of Climatology*, 21, 1863–1898.
- McKinley, G., M. Follows, and J. Marshall, 2003: Interannual variability of air-sea  $O_2$  fluxes and the determination of  $CO_2$  sinks using atmospheric  $O_2/N_2$ . *Geophys. Res. Lett*, **30**, 1101.
- Nakamura, H., and A. Shimpo, 2004: Seasonal variations in the Southern Hemisphere storm tracks and jet streams as revealed in a reanalysis dataset. J. Climate, 17, 1828–1844.
- Qiu, B., and F.-F. Jin, 1997: Antarctic circumpolar waves: an indication of ocean-atmosphere coupling in the extratropics. *Geophys. Res. Lett*, 24, 2585–2588.
- Rintoul, S., and M. England, 2002: Ekman transport dominates local air-sea fluxes in driving variability of subantarctic mode water. J. Phys. Oceanogr, 32, 1308–1321.
- Saravanan, R., and J. McWilliams, 1998: Advective oceanatmosphere interaction: An analytical stochastic model with implication for decadal variability. *J. Climate*, **11**, 165–188.
- Scott, R., 2003: Predictability of SST in an idealized, onedimensional, coupled atmosphere-ocean climate model with stochastic forcing and advection. J. Climate, 16, 323–335.
- Sloyan, B., and S. Rintoul, 2001: Circulation, renewal, and modification of Antarctic mode and intermediate water. J. Phys. Oceanogr, 31, 1005–1030.
- Sterl, A., 2004: On the (in)homogeneity of reanalysis products. J. Climate, 17, 3866–3873.
- Talley, L., 1999: Simple coupled midlatitude climate models. J. Phys. Oceanogr, 29, 2016–2037.
- Thompson, D., and J. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 1000–1016.
- Weisse, R., U. Mikolajewicz, A. Sterl, and S. Drijfhout, 1999: Stochastically forced variability in the Antarctic circumpolar current. J. Geophys. Res, 104(C5), 11,049–11,064.
- White, W., and R. Peterson, 1996: An Antarctic circumpolar wave in surface pressure, wind, temperature and sea ice extent. *Nature*, **380**, 699–702.
- White, W., S.-C. Chen, and R. Peterson, 1998: The Antarctic circumpolar wave: A beta effect in ocean-atmosphere coupling over the Southern Ocean. J. Phys. Oceanogr, 28, 2345–2361.
- Wunsch, C., 1999: The interpretation of short climate records, with comments on the North Atlantic and southern oscillations. *Bull. Am. Met. Soc*, **80**, 245–255.
- Yuan, X., and D. Martinson, 2000: Antarctic sea ice extent variability and its global connectivity. J. Climate, 13, 1697–1717.

Printed November 14, 2005.