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1 Sensors and Transducers

Generally a Sensor is a device which allows
us to take a measurement of some physical ob-
servable. A mercury thermometer is a sensor.
Typically we want the output of the sensor to
be an electrical signal so that we can do further
manipulation and processing of the signal using
electronic circuits and ultimately get a repre-
sentation of the signal into a computer-readable
form. Also we may want to go in the other di-
rection: i.e. converting an electrical signal into
some kind of physical observable (such as light,
heat, sound, movement etc.) Here, the Trans-
ducer model is useful. An Input Transducer
converts some physical observable into an elec-
trical signal, and anOutput Transducer goes
in the other direction. Figure 1.1 illustrates
the idea with a simple �public address� system.
The microphone is an input transducer which
converts speech (sound pressure variations) into
a voltage signal. Then we have an ampli�er,
where we can also do more fancy things such as
adjusting the tone (frequency content) of the
signal. The ampli�er drives a speaker which is
the output transducer, whose job is to convert
the ampli�ed electrical signal back into a me-
chanical movement (of the speaker diaphragm)
which in turn gives us sound. This is a good
example since we'll be studying a (more com-
plicated) system of sound/electrical transduc-
ers in the lab sessions.

Figure 1.1: Input/Output Transducers

There are thousands of di�erent types of trans-
ducers and we'll only look at a few in this
course. This is not a course on detector physics
so we don't have the time to study the details
of individual transducers, however we will see
that there are many similarities in how trans-

ducers behave so we can start to see how to use
them in a more general (that is to say device-
independent) way. In this handout we will look
brie�y at two di�erent types of transducer.

1.1 Temperature Transducers

Thermocouple This is the simplest temper-
ature transducer since it directly generates a
voltage. A thermoelectric voltage is generated
across any metal when the two ends are at dif-
ferent temperatures. Using two junctions be-
tween dissimilar metals - one held at a known
temperature, the other at the point we wish
to measure - the voltage generated is propor-
tional to the temperature di�erence between
junctions. The voltage is small - of the order a
few µV/◦C - so precision voltage measurement
is required. The technique requires some care,
however the thermocouple is robust, small, and
operates over a very wide temperature range
(-200 to 1500◦C).

Platinum Resistance Temperature De-
vice (PRTD) This is the standard for high
measurement over the range -200 to 600◦C. The
PRTD shows a nicely linear variation in re-
sistance as a function of temperature. Conse-
quently we just need to measure the resistance
(e.g. with a meter) then apply a conversion fac-
tor to get the temperature. On closer inspec-
tion it is found that the relationship is not quite
linear, so for highest accuracy we need to use
a polynomial �t. This non-linearity makes the
conversion from resistance back to temperature
more complex, but do-able.

Thermistor This is a semiconductor device
where resistance decreases rapidly with temper-
ature. The temperature coe�cient of resistance
is of the order 4%/◦C, which is an order of mag-
nitude better than the PRTD. The thermistor
is also small, cheap and robust, and is since
the requirement on accurate resistance mea-
surement is relaxed compared to the PRTD,
this makes the thermistor the natural choice
for quick, easy temperature measurement over
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the range -75 to 150◦C. They are available
in all sorts of packages for example the glass-
encapsulated ones are good for harsh or chemi-
cal environments (though since glass is an insu-
lator this slows down the response time to tem-
perature changes). One drawback is that the
temperature-resistance relationship looks like

1

T
= A+B lnR+ C(lnR)3 (1.1)

To go from R to T we need either a calculation
or a look-up table, both of which are possible
with electronics and/or a micro-processor, but
this does mean that we can't simply hook the
thermistor up to a meter in the lab and take a
quick reading of the temperature.

The point of this discussion is that none of the
above are perfect and we have to make a choice
according to

� the temperature range we need to cover
and the accuracy required

� the harshness of the environment

� the ease of conversion into a temperature
value

This is a general rule for transducers: the per-
fect device does not exist and we need to com-
promise.

AD590 Solid State Temperature Trans-
ducer Where such a situation exists, the
semiconductor industry is always ready to sell
us a solution. The AD590 from National Semi-
conductor is an integrated circuit device which
produces a highly linear current output of
1µA/K. It works over a reasonable tempera-
ture range of -55 to 150◦C. It comes in a range
of packages (Figure 1.2) and can be bought for
under $10 (more expensive than a thermistor
but cheaper than a good PRTD).

A simple circuit of resistors converts the cur-
rent output to a voltage, then a standard lab
multi-meter gives us a very quick and easy di-
rect reading of the temperature. This is the

Figure 1.2: National Semiconductor AD590

big advantage of using the AD590. The com-
plexity of linearising the output as a function of
temperature is all handled within the circuitry
of the device (this is what we are paying for).
We don't generally need to be concerned with
the physics of what goes on inside the device as
long as we have a good data-sheet to describe
its behaviour. The front-page of the AD590 is
reproduced in Figure 1.3. It is useful to read
the complete data-sheet and you are recom-
mended to download a copy from the manu-
facturer's website at http://www.analog.com.
Browse through it to see the level of detail that
the manufacturer thinks is important for the
user to know. You also might want to iden-
tify the ways in which the performance of this
transducer departs from `ideal' behaviour.

1.2 Photomultiplier Tube

For the temperature transducers we are not,
generally, expecting to operate at the limits
of physics (unless we are trying to measure
mili-Kelvin, but then we would use a di�er-
ent technique anyway). We often need to
measure the temperature of our experiment
or equipment and the above techniques will
usually su�ce. Next we'll look at something
more cutting-edge (recall the dark-matter ex-
periment mentioned in Lecture 1). The Photo-
multiplier Tube (PMT) is a type of light in-
tensity transducer. It is based on vacuum-
tube technology. More modern semiconduc-
tor devices exist for measuring light but the
PMT is superior for noise and sensitivity at
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Figure 1.3: AD590 Data Sheet. See http://www.analog.com/static/imported-
�les/data_sheets/AD590.pdf
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Figure 1.4: Principle of the PMT (from
Diefenderfer and Holton)

extreme low-light levels (down to almost the
single photon). Manufacturers such as Hama-
matsu (http://www.hamamatsu.com/) have
developed devices speci�cally for the physics
community. At the extremes of measurement
science we need to understand the physics of
how the detector works in order to get the best
out of it, which is why we'll look into the prin-
ciple of the PMT.

The operation of the device is illustrated in Fig-
ure 1.4. A photon striking the photo-cathode
liberates an electron. The �rst �dynode� is held
more positive than the cathode so the liberated
electron is accelerated towards it and on strik-
ing the dynode 2 electrons are released. Each
subsequent dynode is progressively more pos-
itive so (in this example) we get an electron
multiplication of 2n where n is the number of
dynodes.

Figure 1.5 shows a typical setup for the PMT.
at the end of the tube the electrons are collected
at a �nal anode and, �owing back to the power
supply through a resistor, generate a voltage
signal, the amplitude of which is proportional
to the number of photons detected.

PMTs are not without their di�culties. A large
(and dangerous) high-voltage supply is needed
(several kV can be applied across the tube).
Even when there is no incident light, thermal
emission of electrons from the photo-cathode
means that a current always �ows in the tube.
This called the Dark Current and we want
to minimise it since it adds noise and reduces
the dynamic range of our measurement (these
are both topics which will be discussed in more
detail later on). One way to do this is to cool

Figure 1.5: Schematic of a PMT Setup (from
Diefenderfer and Holton)

Figure 1.6: A Selection of Photomultiplier
Tubes available from Hamamatsu

down the PMT to reduce the thermal emission.

The Quantum E�ciency of the photo-
cathode is important. This is the percentage
of incident photons which generate an electron
emission. 25% is a typical number but special-
ist tubes can have much higher �gures. A se-
lection of the tubes available from Hamamatsu
is shown in �gure 1.6

Further Reading Diefenderfer and Holton
chapter 7 is good on the general topic of trans-
ducers and has more details of the tempera-
ture transducers and the PMT. Horowitz and
Hill Chapter 15 is also very good though it will
make more sense once we've covered some of
the electronics involved. For the PMT there
is a lot of very good background and techni-
cal information on the Hamamatsu website at
http://www.hamamatsu.com/.
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2 Signals

Generally, a signal is any time or spatially-
varying quantity. We are used to time-varying
quantities such as voltage, current, light inten-
sity and sound pressure. A spatially varying
signal might be, for example, altitude measured
as a function of distance. Typically a signal
represents something physical.

2.1 Continuous and Discrete Sig-

nals

Both the sound pressure and its electrical rep-
resentation are signals in their own right, and
both these types of signals are continuous func-
tions of time. Generally, any physical quan-
tity we may wish to deal with is represented by
a continuous parameter such as mass, length,
voltage, current etc. However, the very act of
measurement creates a discrete signal. Each
time we make a measurement of a quantity
we are generating a discrete signal. For ex-
ample, the height of the sea measured every
hour, or the temperature in a reaction-chamber
measured every second. These are examples of
sampled signals. In physics and engineering we
encounter mainly signals which have been both
sampled and digitised; a subject we will come
in to later. For now it is su�cient to know that
a discrete signal is one where the continuous
quantity has been sampled at regular intervals
to create a discrete set or list of values. In the
rest of this section we will be looking at contin-
uous signals, however it is important to always
bear in mind that a discrete equivalent exists.

2.2 Periodic Continuous Signals

We will need mathematical descriptions of con-
tinuous signals and to see how this is done it
is helpful to consider some of the 'standard'
signals prevalent in physics. Figure 2.1 shows
six common waveforms. The simplest is the
last (f) which is the sinusoid. This might rep-
resent for example the position of a mass os-
cillating with simple harmonic motion. Figure

2.1 shows the time and frequency-domain rep-
resentations. For the latter, the relative am-
plitudes of the �rst six Fourier coe�cients are
given (Note that a separate handout on Fourier
will come along in due course). By convention
f is the fundamental frequency, and 2f , 3f are
the 2nd and 3rd harmonics, and so-on. Our
sinusoid of course has only the fundamental,
but the recti�ed version (e) has both a 'DC' or
constant component at zero Hz, and also lots
of higher harmonics which are due to the sharp
corners in the waveform. Sawtooth (d), Trian-
gle (c) and Square (b) waveforms are frequently
seen in electronics. The triangle and square-
waves have the characteristic that all the even
harmonics are zero. However, all three have
the characteristic that their Fourier series is in-
�nite, i.e. an in�nite number of harmonics is
required to accurately represent the waveform.

2.2.1 Representation by Piecewise Con-
tinuous Functions

In the time-domain, we would like to have con-
venient analytic functions to describe our sig-
nals. An analytic function is one where both
the function and its derivative are �nite over
the region of interest. The sinusoid is of course
easy, but all of the others are non-analytic due
to the discontinuities. The solution is to repre-
sent the signal as a piecewise continuous func-
tion. The �rst step is to state that for any
periodic function

f(t+ T ) = f(T ) (2.1)

where T is the period. Then for the square
wave

f(t) =

{
A
2 , |t| < T

2
−A
2 , T

2 < |t| < T
(2.2)

This method provides a representation for any
of these waveforms; they are non-analytic, but
functionally useful and can be handled mathe-
matically as we shall see.
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Figure 2.1: Waveforms frequently encountered
in physics or engineering

2.3 Non-periodic Continuous Sig-

nals

There are a number of non-periodic functions
which are particularly relevant to instrumenta-
tion due to their special properties. We'll re-
view these here.

2.3.1 Unit Step Function

This is important both analytically and prac-
tically. Whenever we close a switch a step-
voltage is applied; we can have a step change

Figure 2.2: Rectangular Pulse Function

in applied force, temperature, etc.

u(t) =

{
1, t > 0

0, t < 0
(2.3)

Mathematically it is unsatisfactory as it is un-
de�ned at t = 0, however in reality we know
that the change in voltage, force, temperature
etc does not truly occur instantaneously. The
unit step is the ideal, mathematical represen-
tation, and the discontinuity can be handled
within the mathematical framework we will use.
We can scale and time-shift the unit step. As
an exercise try drawing 7u(t− 6)1.

2.3.2 Rectangular Pulse Function

The unit pulse function (Figure 2.2) has width
2a and height 1. It can be scaled e.g. hPa(t)
which may represent a voltage h applied for
time 2a.

Pa(t) =

{
0, |t| > a

1, |t| < a
(2.4)

One of the recurring themes in this course will
be the idea that we can understand the be-
haviour of complex systems by looking at the
response to 'simple' waveforms (such as the unit
step) and then deduce what the system would
do in response to combinations of simple wave-
forms. With this in mind, consider that the
pulse can be built from a superposition of step
functions

1See Poularikas Figure 1.5
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Figure 2.3: The Sinc function for a = 1 (solid
line) and a = 1

2 (dashed line)

Pa(t) = u(t+ a)− u(t− a)

Also, we can multiply functions together. We
can make a function zero for all time t < 0 by
multiplying with the unit step. For example we
can specify a non-symmetric pulse of width a
by writing u(t)Pa(t)

2.3.3 Sinc Function

sinca(t) =
sin at

t
(2.5)

The sinc function is shown in Figure 2.3 for two
values of a. It is important as this shape is (in
the frequency domain) the Fourier transform of
the Pulse function.

2.3.4 Delta Function

Occupies a central place in physics and signal
analysis, the delta function can represent point
sources, point charges, a concentrated force, or
a voltage/current acting for a very short time.
We'll de�ne the delta function by its behaviour
under integration

Figure 2.4: Charging a Capacitor

δ(t) = 0 t 6= 0

� ∞
−∞

δ(t) = 1

The delta function 'samples' the value of a func-
tion at any chosen time t0

� ∞
−∞

f(t)δ(t− t0) = f(t0)

The delta function can be considered the limit-
ing case (or mathematical ideal) of many physi-
cal processes. For example, consider the circuit
in Figure 2.4 where the current source can be
programmed to generate short current pulses of
duration ε and amplitude 1/ε

i(t) =
1

ε
0 < t < ε

As an exercise, plot the current for ε = 1, 1/2, 1/4

From the relations q = Cv and i = dq
dt we can

get the voltage as a function of time

v(t) =
1

C

� ε

0

1

ε
dt

Let's assume C = 1F and ε is in seconds then

v(t) =

� ε

0

1

ε
dt =

� ε
2

0

2

ε
dt =

� ε
4

0

4

ε
dt = 1

The area under the curve will always be 1. Fur-
ther, as ε→ 0 and the current pulse approaches
a delta function, the voltage on the capacitor
approaches a 1V step function2. There are two
important lessons from this:

2See Poularikas Figure 1.9
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Electrical Mechanical Comment

Resistor Damper Dissipates energy
Capacitor Mass Stores energy
Inductor Spring Stores energy
Current Force
Voltage Velocity

Table 2.1: Analogy between mechanical and
electrical systems

1. An impulse of current on a capacitor pro-
duces a step change in voltage

2. A capacitor is a current integrator

Note that we could have modelled the same sys-
tem as a force acting on a mass. A unit impulse
force acting on a mass m results in a veloc-
ity 1/m. Here we have the �rst analogy between
electrical and mechanical systems. Capacitance
is to the electrical system what mass is to a me-
chanical system; both might be said to provide
'inertia' to the system, and are capable of stor-
ing energy. The mass stores potential energy
and releases it as kinetic energy, the capaci-
tor stores energy due to the electric �eld across
the device, and releases it as a �ow of current.
We'll see these kind of analogies many times.
For now, it is su�cient to know that electrical
circuits can be used to mimic, or model, the be-
haviour of mechanical, thermal, �uid, and other
physical systems (see Table 2.1). This is useful
in its own right, and since much of instrumen-
tation is based on electronics it makes sense to
study electrical systems in some detail.

2.3.5 Gaussian

The familiar `bell-shaped' Gaussian is a con-
tinuous function generated from a negative
squared exponent f(t) = Ae−at

2

(�gure 2.5).

Adding a parameter m allows us to slide the
curve along the x-axis, and normalising the
area under the curve to 1, gives us the familiar
Gaussian form

f(t) =
1

σ
√

2π
e−

(t−µ)2

2σ2 (2.6)

Figure 2.5: Gaussian pulse f(t) = e−t
2

, with
pulse width identi�ed as 'Full-Width at Half-
Maximum' (FWHM)

The pulse width (FWHM) is always 2
√

2 ln 2σ.
The shape of fast pulses travelling in a medium
such as a cable or an optical �bre is often
described as being `approximately Gaussian'.
f(t) may represent the voltage of a pulse trav-
elling down a cable. Alternatively f(t) could
represent the electric �eld component of a light-
pulse in an optical �bre, in which case we would
typically use the pulse intensity f(t)2 as this is
the physical observable. As well as being phys-
ically realistic , this is also quite convenient:

Gaussian-squared. The square of a Gaus-
sian is another Gaussian, so if we say that the
signal amplitude is Gaussian-shaped then so is
the signal power

Fourier Transform. The FT of a Gaus-
sian is another Gaussian. This makes it quite
a convenient signal shape to study.
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3 DC Circuits

DC is short for Direct Current, which refers to
a static or constant current �owing in a circuit.
AC for Alternating Current refers to a (usually
sinusoidal) varying current in a circuit. A DC
current is what you get from a battery, while
the mains provides AC at 50 Hz. In physics,
and certainly in engineering, these terms are
used rather loosely to mean any signal which
is either constant or varying. For example we
might talk about a DC voltage of 1.5V (from an
AA battery), or 240VAC (mains voltage). We
might even describe the intensity of radiation
from a Pulsar as an 'AC signal', or the weight
of a kilogram of lead as a 'DC signal'.

In this section we'll review some of the basic
concepts in DC circuits, i.e. ones where a con-
stant current �ows. We'll go back to some very
basic concepts; this should be

� a refresher (in that you will have seen all
of this before in the �rst year electronics
course)

� an aide-memoire (summarising the basic
concepts and equations)

3.1 Current

Current is rate of �ow of charge

i =
dq

dt

The SI unit is the amp, with one ampere (A)
being equivalent to 1 coulomb (C) per second.

1A ≡ 1C/s

Note that by convention we use the letter i to
represent current, but it can appear as either
lower or upper-case. Our charge carriers are of
course electrons, and since there are plenty of
free electrons in metals it makes sense to use
metal (usually Copper) to connect together the
parts of our circuits, but generally the wires

Figure 3.1: Conventional Current

play no part of in the circuit other than as con-
duits for electrons, or more speci�cally to con-
nect di�erent parts of the circuit to the same
potential. Refer to Figure 3.1, about the sim-
plest circuit possible, it may represent a torch.
A bulb is e�ectively a resistor; when current
�ows it gets so hot it glows incandescently. The
battery provides a potential di�erence across its
terminals. By convention the positive terminal
is the larger 'plate'.

3.1.1 Conventional Current

Electrons are attracted to the positive terminal
and hence �ow anti-clockwise, however conven-
tional current is taken to �ow in the opposite
direction to actual electron current, and hence
is de�ned as �owing from positive to negative
potential. We might think of conventional cur-
rent as �ow of positive charge or 'holes'. We
- like most textbooks - will always use conven-
tional current, even when we are talking about
beams of electrons �owing in a vacuum tube.

3.1.2 Conservation of Charge

The total number of electrons (or holes) in the
circuit is constant. This is a statement of con-
servation of charge. Consequently, the current
i at point a is the same as that at b, the same
as that �owing through the resistor, to c, d and
back through the battery. This is an important
concept, always true, and for AC circuits too.
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3.2 Resistance

The sheer abundance of conduction electrons in
the Copper wires means that appreciable cur-
rents will �ow with a net electron �ow speed of
the order 10−6m/s. This is the drift velocity of
the electrons. Contrast this with the average
thermal speed of the electrons at room temper-
ature which is about 106m/s. The overall be-
haviour of the electrons is therefore rather ran-
dom and collision-dominated, and we must see
current as a statistical average drift of electrons
rather than an orderly procession. Because the
electrons are in constant collision with each
other and the atomic lattice of the conductor,
the mobility of the electrons is key to their be-
haviour. Mobility is high in metals, but in Car-
bon it is about a thousand times lower. Clearly
then, if we make a resistor from an insulating
tube covered with a thin �lm of carbon then
mobility will be much reduced and current will
be severely restricted. Ohm's law gives

i =
V

R
(3.1)

3.3 Potential

A di�erence in electrical potential causes cur-
rent to �ow, and of course when a charge moves
through a potential di�eremce work is done.
The SI unit of potential di�erence is the volt,
being one joule per coulomb

1V ≡ 1 J/C

Here, the battery does the work, converting
stored chemical energy into current. When
measuring PD it is important to understand the
sense of the measurement. If our battery is a
single AA then Vad = 1.5V. We would mea-
sure this with a meter by placing the red probe
at a and the black probe at d. If we reversed
the probe we would measure Vda = −1.5V.
Vab = Vcd = 0 because the wires have zero resis-
tance (ideally). Therefore Vbc = Vad. Since we
know the PD across the resistor we can calcu-
late the current through it using Equation 3.1.

Figure 3.2: Grounded circuit establishes zero
reference for potential

3.4 Kircho�'s Voltage Law

States that the sum of the PDs around any loop
is zero

∑
v = 0 (3.2)

Imagine sitting in the centre of the circuit with
the meter probes and measuring each of the
four sides in turn, going round clockwise and
taking car to keep the sense of the measurement
the same as you go.

Vad + Vba + Vcb + Vdc = 0

This is of course trivial, but there could be any
number of components �lling up the top and
bottom sides. Since we know the current is the
same in each, we can calculate the PD across
each. This works for all components, i.e. in-
cluding inductors, capacitors etc, and is suit-
able for AC circuits too.

3.5 Ground

PD is a di�erence measurement. It gives us
the di�erence in potential between two points.
What is the actual potential at a? or d? The
answer is that we don't know as there is no ref-
erence potential in this circuit. It is said to be

12



Figure 3.3: Series resistance

�oating. Any battery-powered kit from a multi-
meter to a laptop is �oating. We could connect
the circuit to ground as in Figure 3.2 then we
would know that the potential at d (and c) is
zero volts. Ground (the Earth pin on a plug) is
genuinely connected physically to a large cop-
per spike in the basement of the building driven
into the earth. This is taken by convention as
the zero reference for electrical potential. Now

Va = 1.5V

Scientists and engineers use voltage and poten-
tial di�erence interchangeably. This is wrong
but in such common use as to be unavoid-
able. We might often say �the voltage across
R is 1.5V� when we mean �the potential di�er-
ence...�

3.6 Series Resistors and the Volt-

age Divider

Resistors in series add, i.e. R = R1 +R2

In Figure 3.3 we can use Ohm's law to state
Vab = iR1. Note the sense of the subscript.
Ohm's law gives us the voltage drop from a to
b when a�b is the direction of conventional
current. So a is at a higher potential than b
(which Kircho� con�rms) and hence

Vb = Va − iR1

Figure 3.4: Parallel Resistors

We �nd the current �owing in both resistors as

i =
Vac

R1 +R2

Combining the two above equations and not-
ing that Vac = Va we get the Voltage Divider
equation

Vb =
VaR1

R1 +R2
(3.3)

3.7 Parallel Resistors and the

Current Divider

For resistors in parallel such as Figure 3.4 use

1

R||
=

1

R2
+

1

R3

We can calculate the current as

i =
Va

R1 +R||

We can calculate Vb since R1 and R|| are a volt-
age divider. Then

i2 =
Vb
R2

, i3 =
Vb
R3

(3.4)

We would �nd that the Current Divider rule is
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i2 =
iR3

R2 +R3

Note the similarities and di�erences with the
Voltage Divider rule. Generally this can get
confusing and it's easier to just remember the
voltage divider rule and then use the method
of equations 3.4 to get the currents in the
branches.

3.8 Kircho�'s Current Law

Conservation of charge tells us that the current
going into point b must equal the current com-
ing out, so i = i1 + i2. This is enshrined in
Kircho�'s Current Law which states that the
sum of all the currents into a node (junction)
is zero

∑
i = 0

To draw this we would change the direction of
the i2 and i3 arrows which also changes their
algebraic sign and then indeed the sum into b
is zero.

3.9 General Method for Circuit

Analysis

The above rules give us everything we need for
the vast majority of circuit analysis. Usually we
are given as a starting point some knowledge of
the current or some potentials. As a general
approach

� If you know the current in any branch of
a circuit then calculate the PD across any
components and then determine the poten-
tials (using Ohm and KVL) of any branch-
ing points in the circuit.

� Conversely if you are given the potential
relative to ground at any point then try to
calculate the current in that branch and
use a combination of Ohm and KCL to de-
duce any currents.

3.10 Voltage and Current Sources

An ideal voltage source provides a �xed voltage
across its terminals which is independent of the
load resistance to which it is connected (and
hence the amount of current drawn). It appears
to have zero resistance, in that it dissipates no
power. In reality, there is a limit to how much
current a voltage source can supply, and there
is always some internal resistance. A battery is
a good voltage source example: a 9V battery
connected to a 3 Ohm load will supply a full
3A (for a few minutes). The battery will get
hot due to it's non-zero internal resistance (less
than an Ohm). The load resistor will get very
hot! On circuit diagrams you'll often see the
battery symbol as used here or sometimes just
a circle with the �V� symbol.

An ideal current source provides a �xed current
which is indepenedent of the load resistance to
which it is connected (and the amount of volt-
age it must generate). In reality there is a limit
to how much voltage a current source can gen-
erate. There is no simple physical example of a
current source; often they are quite complicated
and expensive pieces of lab equipment. The
standard circuit symbol is two part-overlapping
circles, though quite often you'll see just a sin-
gle circle marked �I�, so take care to distinguish
these from voltage sources.

3.11 Thevenin Equivalent Circuit

As a �nal remark on DC circuits, Thevenin's
Theorem is frequently used in instrumentation
since the Thevenin Equivalent Circuit is a con-
venient way of encapsulating the behaviour of
more complex circuits which may represent, for
example, a sensor. Thevenin states that

Any network of many sources and impedances
can be replaced by a single source in series with
a single impedance

Sources are voltage sources such as in Figure
3.5, or current sources. Here we consider re-
sistances but the method works also for gener-
alised impedances as we shall see later.
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Figure 3.5: Thevenin Equivalent Circuit

Thevenin's Theorem tells us that the top and
bottom circuits in �gure 3.5 are exactly equiv-
alent. If the two circuits were inside a �black-
box� with just the two terminals on the out-
side then nothing we could do from the outside
could tell the di�erence. To get the Thevenin
equivalent circuit we just need to determine -
by calculation or measurement - the values of
Vth and Rth.

Thevenin Voltage Vth is the open-circuit
PD across the terminals. Open circuit means
that no current is drawn down the terminal
branches, i.e. when there is no 'load' attached
to the circuit. For example if we measure the
voltage at b with a multi-meter then it has an
input impedance of MW so, as long as Rn ∼ kΩ
we can con�dently assert that the measured
voltage is very close to the open-circuit value.
The meter hardly 'loads' the circuit at all. In
this case, we have already calculated Vth since
it is equal to Vb

Thevenin Resistance Rth is the combined
impedance (resistance) when

1. Any voltage sources are short-circuited
and

2. Any current sources are open-circuited

We short-circuit the battery by removing it and
connecting across points a and d. Then all
three resistors are in parallel so

1

Rth
=

1

R1
+

1

R2
+

1

R3

This is the resistance we would measure if we
connected a resistance meter across the termi-
nals of the circuit.

The point of the Thevenin circuit is that it be-
haves exactly like the original, however it is eas-
ier to see how it behaves under di�erent load
conditions. Connecting a high impedance me-
ter across the terminals we measure Vth, since
no current �ows in Rth, however were we to
connect a low-impedance load (say a light bulb)
then it is easy to see how the current �owing
means there is a voltage drop across Rth. Is-
sues of input and output impedance are very
important and we will come back to this later.

In the Thevenin equivalent circuit, Vth is an ide-
alised voltage source, and Rth is the apparent
series (internal) resistance of the circuit. As an
example, the Thevenin equivalent of the bat-
tery mentioned in section 3.10 would be a volt-
age source of 9V in series with a resistance of
about 1

4Ω

Further Reading There are very readable
sections on DC circuits in Diefenderfer (Chap-
ter 1) and Horowitz and Hill (Chapter 1)
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4 AC Circuits

As previously mentioned, electronic circuits
are good analogues for other physical systems
(see Table 2.1). Dynamical systems are repre-
sented by circuits processing time-varying sig-
nals. Further, we need to understand how AC
circuits can manipulate electrical signals from
sensor systems. We introduced the capacitor in
2.3.4, and will now look at AC components and
signals in general.

4.1 Capacitor

Essentially two parallel metal plates with an in-
sulating dielectric in-between, the capacitor has
ideally in�tite ohmic resistance to DC current.
When a PD is applied it stores energy in the
electric �eld. By de�nition the capacitance is
measured in farad (coulomb per volt)

C =
q

V
(4.1)

From which we obtain the key relations

V (t) =
1

C

� t

−∞
I(τ)dτ (4.2)

I(t) = C
dV (t)

dt
(4.3)

See also Figure 2.4. Note that for AC signals
the current, integrated over one cycle, leaves no
net charge on a capacitor, and hence 〈V (t)〉 =
0. See Poularikas Example 2.1. Capacitors in
parallel add together (i.e. opposite to resistor
behaviour) which is logical when we consider
that 2 caps in parallel are the same as a single
cap with plates twice as large3.

As a consequence of the above equations, when
we apply a sinusoidal voltage to a capacitor, the
current through the capacitor leads the voltage
across it by 90◦.

3For further information see Diefenderfer 2.2 & 2.3

4.2 Inductor

An inductor is essentially a coil of wire (or a
solenoid), usually wound around a core of high
magnetic permeability such as iron or ferrite to
increase the inductance (in henry, or weber per
amp)

L =
ψ

I
(4.4)

Using Faraday's law V (t) = dψ/dt we obtain
the relations

I(t) =
1

L

� t

−∞
V (τ)dτ (4.5)

V (t) = L
dI(t)

dt
(4.6)

As a consequence, when we apply a sinusoidal
voltage to an inductor, the current through the
inductor lags the voltage across it by 90◦.

4.3 Complex Representation of

Signals

Consider a voltage V (t) = V0 cosωt driving a
capacitor C. Then the current which �ows in
the capacitor is

I(t) = C
dV (t)

dt
= −CωV0 sinωt (4.7)

Clearly there is a voltage/current phase di�er-
ence of p/2. It's frequently more convenient
to use a complex representation. A voltage
V (t) = V0 cos(ωt + φ) is represented by the
complex number V = V0e

jφ. This represents
the voltage as a vector in the complex plane.
There are a couple of points to note:

1. The signal (voltage) is of course a real
quantity and is represented by the real part
of the complex quantity

2. Engineers typically use j instead of i to
avoid confusion with current
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3. In most situations we are just concerned
with the relative amplitude and phase of
the various voltages in the circuit so the
time-varying part of the representation
ejωt is taken for granted.

To get the actual voltage signal, multiply by
ejωtand take the real part

V (t) = Re{V ejωt} = V0 cos(ωt+ φ) (4.8)

4.4 Phasor Representation

Consider the vector P = (a + jb) plotted on
the Argand diagram (�gure 4.1). a = P cos θ,
b = P sin θ and

P =
√
a2 + b2 =

√
PP ∗

Using the Euler relations we see that the vector
is represented as Pejθ. If we advance the vector
by a phase of p/2 we get Pejθ+π/2 and if we ad-
vance by p then we get Pejθ+π/2 = −Pejθ from
which we can see that ejπ = −1. Taking the
square-root of both sides ejπ/2 =

√
−1. Conse-

quently, multiplication by j represents an anti-
clockwise rotation by p/2. The relevance of this
to AC circuits comes from the fact that a mul-
tiplication by ejθ represents a rotation θ in the
complex plane. In general then any sinusoidal
physical quantity (voltage, current etc.) can be
thought of as a vector rotating anti-clockwise.
The Argand diagram is a 'snapshot' e.g. at time
t = 0.

4.5 Reactance

Returning to the capacitor example of 4.3 we
can see

V (t) = V0 cos(ωt+ φ) = Re{V ejωt}

I(t) = C
dV (t)

dt
= −CωV0 sinωt = Re

{
V ejωt

− j
ωC

}

= Re

{
V ejωt

Xc

}

Figure 4.1: Phasor Representation on the Ar-
gand Diagram

Where Xc is the Reactance of the capacitor.
Similarly we de�ne the reactance of the induc-
tor XL. The reactance is the AC impedance of
the circuit element.

XC =
−j
ωC

(4.9)

XL = jωL (4.10)

Clearly, inductors and capacitors have purely
imaginary impedance, which gives them the
quality that they induce a π/2 phase shift be-
tween voltage and current and hence dissipate
no power. The resistor is the opposite: it has
purely real resistance, dissipates power, and the
voltage is always in phase with the current.

4.6 Complex Impedance

The complex impedance Z of any circuit ele-
ment or combination of elements is the vector
combination of the resistive and reactive com-
ponents according to the same rules as pure
resistances

Zseries = Z1 + Z2 (4.11)

1

Z||
=

1

Z1
+

1

Z2
(4.12)

We can visualise this with the Argand diagram.
If we have a resistor in series with an inductor
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Figure 4.2: Complex impedance on the argand
diagram

then Z = R + jωL where |Z| =
√
R2 + ω2L2

and φ = tan−1
(
ωL
R

)
Figure 4.2 requires some interpretation. The
Argand diagram gives us the relative phases
of the voltages in our circuit. The voltage
across the inductor (positive imaginary axis)
leads the voltage across the resistor (real axis)
by π/2 (Note: this is consistent with the �V
leads I� rule for inductors; V is in phase with
I for the resistor). Let us say that we apply
a voltage V (t) = V0 cos(ωt + φ) = Re{V ejωt}.
Then the Argand diagram gives us a 'snapshot'
of the voltages at time t = 0. Actual volt-
ages (as would be measured with the 'scope)
are projections onto the real axis. The volt-
age across the resistor is at its peak value
(phase=0). The voltage across the inductor
is zero (phase=π/2), and the applied voltage
(across both) is V0 cosφ.

Note that at all times Kircho�'s Voltage Law
applies: the instantaneous applied voltage al-
ways equals the sum of the instantaneous volt-
ages on the resistor and inductor.

4.7 Ohm's Law Generalised

The capacitive and inductive reactances have
units of Ohms (W). Ohm's law is applicable to
impedances generally.

V = IZ (4.13)

Where all the quantities are complex. Note
however that only V and I can be represented
as phasors (time-varying complex quantities).
The impedance Z is a complex constant. This
simultaneously illustrates the usefulness and
the limtation of the phasor representation: If
we know the phasor current I we can multiply
it by the by the complex impedance Z to get
the phasor voltage V

V0e
jφ = I0e

jψZ0e
jθ

where the amplitudes obey V0 = I0Z0 and the
phases φ = ψ + θ. This is much easier than
solving problems using the triginometic forms.
However we can never multiply two phasors to-
gether - that would represent the product of two
sinusoids which would give us new frequency
components! In practice, the use of phasors is
limited to situations like equation 4.13 where a
complex constant modi�es the amplitude and
phase of a phasor. This does turn out to be
incredibly useful and will be the basis later on
for much of our work on linear systems. This
also means that phasor notation can only rep-
resent systems at a given frequency (that is to
say, while Z is a function of frequency, for any
I we get a V of the same frequency).

Reactive components have two important prop-
erties which we will see the use of in future sec-
tions:

1. Phase shifting (as discussed above)

2. Frequency dependence. At DC (zero Hz)
the reactance of the inductor is zero. It
is a short-circuit. At high-frequencies, the
reactance tends to ∞ (open circuit). The
capacitor is the opposite way round. as we
have seen before, it is open-circuit at DC.

Note that if we just want to work with the mag-
nitudes of the voltages and currents (i.e. we
don't care about the detailed phase relation-
ships) then we can use |Z| = |V |/|I|, so for a
capacitor we can calculate the amplitude of the
current as I0 = V0ωC
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4.8 Power in AC Circuits

If we have a sinusoidal voltage V = V0 sinωt
then, even though the average value of V is
zero, the signal has the capacity to dissipate
power when it is applied across a resistor R
according to

P = V I =
V 2

R
=
V 2
0 sin2 ωt

R
(4.14)

This is the instantaneous power at any time t.
More useful (see boxed example) is the Average
Power

〈P 〉 =
V 2
0

R

〈
sin2 ωt

〉
=
V 2
0

2R
(4.15)

The average4 is taken over a cycle of ω.

4.8.1 Root Mean Square

The RMS or Root Mean Square of a Signal is
a measure of the power in the signal. For our
voltage V it is

VRMS =
√
〈V 2〉 (4.16)

(it does exactly what the name says! ) Hence for
a sinusoidal signal

VRMS =
V0√

2
(4.17)

The average power dissipated in a resistor is

〈P 〉 =
V 2
RMS

R
= VRMSIRMS (4.18)

The above is always true, regardless of the
shape of the waveform. RMS is a useful mea-
sure since it gives the equivalent power (or heat-
ing e�ect) as the constant `DC' voltage of the
same value.

Example: The UK mains voltage is 240 volts
RMS, the amplitude of the mains signal is
about 340V, and the peak to peak voltage
is 680V. A 60W light bulb (old-fashioned
tungsten-type) will have a resistance of 960W

4To see why the average value of a squared-sine func-
tion is 1

2
consider the identity 2 sin2 θ = 1−cos 2θ. Over

a cycle, 〈cos 2θ〉 = 0

4.8.2 Power in Reactive Circuits

For circuits with inductance and/or capaci-
tance the average power becomes

〈P 〉 = VRMSIRMS cosφ (4.19)

Where φ is the phase di�erence between V and
I and cosφ is often called the `power factor'.
To understand this consider again the capaci-
tor. The voltage is p/2 out of phase with the
current. The instantaneous power delivered to
the capacitor is P = V I (sketch this to visu-
alise it). Positive power is when the capacitor
is charging and negative power is discharging.
Clearly, over a cycle the average power is zero.
This is true for any circuit with purely imag-
inary impedance. Circuits with some real (re-
sistive) component of impedance will dissipate
power. In general we could determine average
power by integrating over a cycle and dividing
by the time for one cycle. This gives

〈P 〉 =
Re{V I∗}

2

=
Re{V ∗I}

2
= VRMSIRMS cosφ
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5 Sampling and Digitization

Most signals we encounter in physics are contin-
uous functions of time, such as voltage or light
intensity. If we want a computer to interact
with these variables we have to �rst sample and
then digitize them. The key point to take from
this is that the process of sampling quantises
time while digitization quantises the parame-
ter being measured. Ultimately, this means we
lose information about the original signal, and
we have to be very careful in how we interpret
digitized signals. This section will outline some
of the basics of this process.

Note that sampling and digitization is not en-
tirely a phenomenon of the computer-age. Tak-
ing a temperature reading (every hour, or ev-
ery day...) is a process of sampling. Converting
the height of mercury in the thermometer (a
continuous, analogue parameter) into a num-
ber written down in a notebook is digitization.

Note also that in the following text we will fol-
low the approach given in Chapter 3 of the book
�The Scientist and Engineer's Guide to Digi-
tal Signal Processing� by Steven Smith. This
book is excellent, very readable and provides a
good descriptive text though not always with as
much mathematical backing as we might like.
It is also available online5.

5.1 Sampled Signals

As suggested above, sampling and digitization
is a two-stage process, as illustrated in the cen-
tral �block diagram� of �gure 5.1. Taking an
analogue signal (typically a voltage) as an in-
put we must �rst sample it, which is mathe-
matically equivalent to taking an instantaneous
value of the function. Now, usually we want a
series of samples with uniform spacing in time.
If the time between samples is Ts then we can
de�ne a sampled version of the function as

fs(t) =

∞∑
n=−∞

f(nTs)δ(t− nTs) (5.1)

5www.dspguide.com

This says we take the function f(t) and we mul-
tiply it with an in�nite sequence of delta func-
tions (mathematically this is the comb func-
tion). What we get is an in�nite sequence of
delta functions, each one weighted by the in-
stantaneous value of the function. The main
point to take from this is that a Sampled Sig-
nal is mathematically very di�erent from a con-
tinuous signal in that it is non-zero only for the
values of time t = nTs.

5.2 Sample and Hold

In practice this mathematical representation is
very far from reality, since

1. We know that it is actually very di�cult
to get an instantaneous value of a function
since any real-world hardware will take a
short but �nite time to take a sample.

2. As per �gure 5.1, we want to pass the sam-
pled value into the next block which per-
forms the digitization. this can take some
considerable length of time to do so we
want to value of the sample to persist.

The solution is the Sample and Hold circuit,
whose job is to take a snapshot sample of the
waveform and then hold that value on its out-
put. Note that the output is still an analogue
voltage. The circuit takes a sample when com-
manded to do so by an external Clock Signal.
The clock is usually a square wave with period
Ts. The sample typically occurs on each Ris-
ing Edge of the clock signal, so if we have a
nicely stable clock signal we will have very reg-
ular sampling, which is very important for the
quality of the sampled signal. The circuit for
the sample and hold is relatively straightfor-
ward, but we'll look at this later.

As shown in �gure 5.1, changes at the input
that occur between sample times are ignored.
That is to say, sampling converts time (the
independent variable) from continuous to dis-
crete.
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Figure 5.1: Waveforms illustrating the two-stage process of Sampling and Digitization (from
Smith, www.dspguide.com)

22

http://www.dspguide.com


5.3 Digitization

In �gure 5.1 we can assume that the input sig-
nal can vary from 0 to 4.095 volts which the
Analogue to Digital Converter (ADC) will
convert into the digital numbers 0 to 4095. The
ADC produces an integer value for each of the
samples. Only integer values are allowed, which
means that the ADC has a Digital Resolu-
tion of 1 mV (the smallest change on the in-
put which will guarantee a change in the out-
put number). Therefore, the ADC performs a
Quantisation: it converts the voltage (the de-
pendent variable) from continuous to discrete.
The bottom panel of the �gure shows the error
that this process introduces called the Quan-
tisation Error, de�ned as the di�erence be-
tween the sampled signal and its digital rep-
resentation. It it presented in terms of digi-
tal numbers so the probability density function
PDF shows that it is uniformly distributed be-
tween ±0.5. The fundamental digital number
is frequently referred to as the Least Signif-
icant Bit(LSB), for reasons we'll come onto
soon. The ADC is a rather more complicated
circuit than the sample and hold, and again
we'll look at this later.

5.4 Binary Digits

A �bit� is a Binary Digit which consequently
has only two values: �1� or �0�. In our ADC ex-
ample we can have any digital number between
0 and 4095, that is to say 4096 distinct val-
ues, which are represented by a 12-bit binary
number (since 212 = 4096). Table 5.1 gives
some examples. Digital electronics uses binary
representation of numbers since this �ts nicely
with the fundamentally two-state �ON=+5V�
and �OFF=0V� nature of digital logic6.

To some extent the �number of bits� is a mea-
sure of precision or at least digital resolution. If
we were to use a 14-bit converter over the same
input range then the resolution would increase
four-fold (each digital number now represents
0.25 mV). In engineering-speak, the LSB (right-
most binary digit) is 0.25 mV.

6See Horowitz and Hill chapter 8

Binary Decimal

000000000000 0000
000000000001 0001
000000001110 0014
111111111111 4095

Table 5.1: Some 12-bit Binary Numbers and
their Decimal Equivalents

5.5 Quantisation Error

Quantisation results in nothing more than the
addition of some random noise to our signal.
As mentioned above and in �gure 5.1, this ex-
tra noise is uniformly distributed between ±0.5
LSB. This means we can de�ne the noise sta-
tistically according to its mean µ and standard
deviation σ

µ = 0

σ =
1√
12
LSB

Now, for distributions with zero mean, the
RMS is the same as the standard deviation7.
If we want to reduce the RMS noise in our digi-
tized signal, we need to �improve the resolution
of the measurement by increasing the number
of bits�

Example: Quantisation Noise as Per-
centage of Full-Scale Input Passing
an analogue signal through an 8-bit ADC
with a adds an RMS noise of 1/

√
12LSB.

Since the full-range (maximum) input is
28, this is about 0.1% of the full-range
value. If we switch to a 12-bit ADC this is
reduced to 0.007% (much more acceptable,
generally)

This understanding of quantisation noise is
extremely powerful, because the RMS noise
generated during digitization simply adds in
quadrature with any noise already existing in
the analogue signal (and as we shall see later,
there always is some noise in any signal).

7Look up the de�nitions to check this if you are un-
sure
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Example: Quantisation Noise Com-
pared to Signal Noise Returning to
our original example of the 12-bit con-
verter with a resolution of 1 mV. Say the
RMS noise measured in the analogue sig-
nal is 1/2 mV then this translates to 1/2 LSB
in digital numbers and the total noise is√

1/4 + 1/12 u 0.6LSB. Note how the dig-
itization increases the overall noise by a
small amount. We might be tempted to
upgrade to a 14-bit converter, but actually
there is little point, since the total noise
will always be dominated by that in the
original signal.

As a �nal note on the subject, recall that the
ADC returns only integer values but we are
talking here about noise being a fraction of
1LSB. We will only see this noise in the statis-
tics of a large number of samples, each of which
is an integer, but taken together have non-
integer statistics.
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Figure 6.1: Simple RC circuit - The Low-Pass
Filter

6 The RC Circuit

To see how to use the AC circuit analysis dis-
cussed in section 4 we'll study the series RC
circuit in some detail. This also provides a sim-
ple illustration of several important concepts
for the course. Because the capacitor has an
impedance which is frequency-dependent, the
RC circuit is an example of the class of systems
known as �lters, which will be very important
for our studies.

As shown in �gure 6.1, if we apply an input
voltage across resistor and capacitor we can
choose to take the output across either the re-
sistor of the capacitor. Here we'll take the out-
put across the capacitor. Consider the limit-
ing cases of frequency: as ω → ∞ then the
impedance of the capacitor tends to zero and
is e�ectively short-circuit, so the entire input
voltage appears across the resistor (by KVL)
and VC → 0. Conversely at DC (e.g. if we
apply a constant voltage) then the impedance
of the capacitor tends to ∞, the current �ow-
ing tends to zero, hence VR → 0, and the en-
tire applied voltage appears across VC . We'll
study two intermediate behaviours in more de-
tail: �rst the behaviour under steady-state AC
conditions, and secondly the transient response.

6.1 Steady-State Behaviour

In the folowing discussion, voltages and
impedances are complex quantities. In the
steady-state condition, we are working with pe-
riodic signals which have been present at the
input for su�ciently long time that there is no
remaining 'transient behaviour' (which we will
cover in the next section. Vin is an AC sinu-
soidal waveform and the voltage across the ca-
pacitor we label as Vout. Complex Ohm's law
gives

I =
Vin
Z

=
Vin

R− j
ωC

Vout = − Ij

ωC

We want to �nd the output in terms of the in-
put which we de�ne as the Gain

Gain =
Vout
Vin

=
−j

ωCR− j

Multiplying by the complex conjugate of the
denominator and simplifying gets

Gain =
1− jωCR
ω2C2R2 + 1

(6.1)

As anticipated the Gain is both frequency-
dependent and complex (implying a phase
change at the output). To visualise this we
need to plot the magnitude and phase of the
Gain

|Gain| =
√
Gain×Gain∗ =

1√
ω2C2R2 + 1

(6.2)

φ = tan−1
(

Im{Gain}
Re{Gain}

)
= tan−1(−ωCR)

= − tan−1(ωCR) (6.3)
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Figure 6.2: Bode Plot of Low-Pass Filter

6.2 Bode Plot

The Gain and phase plots together constitute
theBode Plot for the RC �lter system. In Fig-
ure 6.2 the frequency axis has been normalised
to units of ωc = 1

RC = 1 rad/s.

For the Bode plot the gain magnitude
is traditionally plotted log/log in dB, i.e.
20 log10Gain. The phase is usually given in
degrees.

6.3 Phase Interpretation

The interpretation of the Gain magnitude is
clear: it is the ratio of the amplitudes of the
output voltage (that across the capacitor) to
that of the input voltage (applied to both the

Figure 6.3: Argand Diagram for the Low-Pass
Filter

capacitor and the resistor in series). The in-
terpretation of the phase is more di�cult. We
understand that there is a phase di�erence, but
between what and what? And does it lead or
lag?

6.3.1 By Argand Diagram

To understand this, we can use the Argand di-
agram (Figure 6.3). At this instant in time,
we know that the voltage VR across the resistor
(and the current through it) is along the real
axis i.e. it has a phase angle zero. The voltage
VC across the capacitor is always out of phase
with the current and we can see that it has a
phase angle -p/2. The voltage on the input is
along Z, the combined impedance. The phase
of the Gain is de�ned as the angle by which the
output voltage leads the input voltage and here
this is negative, i.e. −φ = − tan−1(ωCR).

6.3.2 By Phasor Representation

A simpler but maybe less intuitive method is
to consider the phasor representations of the
quantities involved and use

Vout = Gain× Vin

We know Vin lies along Z at t = 0 so we can
write that the phase angle is (clockwise from
the real axis) θ = 3π/2 + φ and consequently

Vout = |Gain| ejφ |Vin| ejθ

= |Gain||Vin|ej(θ+φ)
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As we know from above, φ is negative, so it is
clear that Vout lags Vin by φ.

6.4 Low-Pass Filter

Frequencies ω < ωc pass from input to output
with little attentuation (or phase change). ωc
is the Cut-o� Frequency, i.e. the frequency
at which the Gain has fallen by 3dB (a factor
of 1/

√
2) from the maximum. If we imagine

that the �lter is driving (i.e. connected across
the output terminals) a load resistance Rload
then the cut-o� frequency is where the power
delivered into Rload has fallen by half compared
to the �at or 'pass-band' range of frequencies.
For ω � ωc we can see

|Gain| ∝ 1

ω
(6.4)

On the Bode Plot we see this as a slope of -20dB
per decade of frequency (a decade is a factor of
10). This is equivalent to -6dB per octave (an
octave is a factor of two in frequency). Both
these �gures are often quoted as the character-
istic 'roll-o�' frequency behaviour for a �rst-
order (see section 6.5) low-pass �lter.

High frequencies are severely attenuated, hence
the understanding of this circuit as a Low-
Pass Filter. As an example, were we to build
a �lter with R = 1Ω, C = 1F and apply a 1
volt signal at ω = 1 rad/s then the waveforms
would be as per Figure 6.4.

Note that, by KVL, the voltage across the re-
sistor has the opposite behaviour, so if we swap
resistor and capacitor we have a High-Pass
Filter.

6.5 Transient Response of the

High-Pass Filter

For situations where we do not have a 'steady-
state' we need to consider the transient re-
sponse of the circuit. This is quite common in
instrumentation applications; something hap-
pens at time t = 0 and we need to observe how
the system evolves for times t > 0. Consider

Figure 6.4: Low-Pass Filter Waveforms (solid
line is input, dashed line is output)

the modi�ed circuit in Figure 6.5. Note that
in this �gure we've swapped the positions of
the resistor and capacitor. This is just because
we want to observe the voltage across the resis-
tor, but in terms of frequency-response this is
a high-pass �lter. If we set the applied voltage
to be a constant V and then close the switch
at time t = 0 then V (t) = u(t)V . From now on
we'll just consider t > 0 so

V (t) = V

VR(t) = i(t)R

Vc(t) =
q(t)

C

Using KVL we �nd

V = VR(t) + VC(t)

Taking the time derivative we get

0 = RC
di

dt
+ i (6.5)

Note that we have set up a �rst-order ordinary
di�erential equation. As a fundamental rule,
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Figure 6.5: Switched RC Circuit

there must be as many arbitrary constants in
the solution to the equation as the order of the
equation. This means we need additional in-
formation if we are to �nd a complete solution,
and this information comes from a knowledge
of the state of the system, usually taken to be
the initial time t = 0. You will have come
across several methods for solving ODEs and
the form of Equation 6.5, where the function
and its derivative must add to zero, suggests
we attempt a trial solution of the form

i(t) = Aest (6.6)

Substituting into Equation 6.5

RCsAest +Aest = 0

Yields

s = − 1

RC

To �nd the unknown A we apply knowledge
of the initial condition of the circuit. This is
assumed to be relaxed. That is to say the ca-
pacitor is uncharged, therefore VC(0) = 0, and
we can take VR(0) = V . A physical under-
standing of this is that, the instant the switch
is closed, there is no charge on the capacitor so
an instantaneous current i(0) = V/R will �ow.
Substituting into Equation 6.6

i(0) = A =
V

R

Figure 6.6: Time-domain response of the high-
pass �lter to step-input

So the full solution is

i(t) =
V

R
e−

t/RC (6.7)

From which

VR(t) = i(t)R = V e−
t/RC (6.8)

The exponential is characteristic of �rst-order
systems. Figure 6.6 gives the response of a
high-pass �lter with R = 10kΩ, C = 1µF to
a step input of 2V.

The Time Constant of the system is RC. As
t → ∞ the capacitor achieves full-charge and
hence VR → 0 as no current �ows. Note that
had we chosen a di�erent initial condition then
the solution is di�erent.

6.6 Initial Conditions

There are three factors which determine how
the voltage in our circuit evolves.

1. The di�erential equations which govern
the circuit. These are entirely �xed and
governed by the physics of the circuit.
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2. The applied signal, in our case the volt-
age V (t). This is frequently referred to as
the Forcing Function; it is the externally
applied signal which causes our system to
respond.

3. The initial conditions of the system. In
section 6.5 we speci�ed that the system
was Initially Relaxed, that is to say the
capacitor carried no initial charge. This is
not always the case.

Imagine now that at some time after the ca-
pacitor is fully charged we open the switch. No
current can �ow round the circuit therefore the
capacitor remains charged. VC = V . If we now
close the switch again, nothing happens - no
current �ows and VR stays zero. Imagine that
we now instantaneouly change our forcing func-
tion to zero, i.e. V (t) = 0. Then following the
same methods as above we will �nd

VR(t) = −V e− t
RC

6.7 Integration and Di�erentia-

tion

If we now repeat this on/o� sequence every T
seconds where T � RC then our forcing func-
tion is a square wave between zero and V with
period T . Plotted on a scale of several input cy-
cles, the output looks like a sequence of spikes
(positive and negative; it is worth sketching
this). The ouptput is then approximately the
time-derivative of the input signal. Mathemat-
ically, we can show this by

VR = iR = RC
dVc
dt
≈ RC dVin

dt

For ω � ωc we �nd the impedance of the capac-
itor dominates over that of the resistor there-
fore Vin ≈ VC
Conversely, were we to go back to the low-
pass con�guration, but increase the values of
R and C to make the time constant RC � T ,
We would �nd the circuit integrates the square
wave to give a triangle output. Note that this

relationship between the square wave and the
triangle wave makes sense from a Fourier point
of view, as we saw in section 7.2. The Fourier
coe�cients of the triangle-wave are similar to
those of the square-wave but scaled by 1/n.
This makes sense when we consider the action
of the low-pass �lter on the square wave as
it has a frequency response of 1/f . Likewise
the high-pass �lter di�erentiates by scaling the
Fourier coe�cients by n. This turns the square
wave into a sequence of delta-functions.

We'll come back to this later on but for now it is
important to have a physical understanding of
these RC circuits and how they behave in both
the time and frequency domains. The principal
characteristics are summarised in Table 6.1.

6.8 Physical Analogues

The RC circuit is a good analogue for physical
systems where the rate of change of a parameter
is proportional to the magnitude of the parame-
ter itself (see Equation 6.5). For example, many
thermal calculations apply the knowledge that
heat-�ow (and hence rate of change of tempera-
ture) is proportional to temperature di�erence.
In mechanics we might have a situation where a
braking-force (hence rate of change of velocity)
is proportional to velocity. Such systems can
be modelled by RC circuits, and indeed in the
past before the use of numerical methods and
computational models, it was common practice
to model physical systems with such 'analogue
computers'.

6.9 Linearity of the RC Filter

The reason we have spent so much e�ort study-
ing the RC �lter is that it belongs to a class of
systems known as Linear Systems. A future
handout is dedicated to the properties of linear
systems. We will see how we can predict the
behaviour of linear systems not just under si-
nusoidal inputs but with any arbitrary input.
This will become a key theme in our studies,
and in later parts of the course we will show
how to use Fourier and Laplace transforms to
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Behaviour Low-Pass High-Pass

Take voltage across C R
Time Constant RC RC

ω � ωc �at Gain 0 dB Gain slope +20 dB/decade. Di�erentiates
Cut-o� frequency ωc = 1/RC ωc = 1/RC

ω � ωc Gain slope -20 dB/decade. Integrates �at Gain 0 dB

Table 6.1: Summary of RC Circuit Characteristics

gain easy solutions to some seemingly very com-
plex problems in systems analysis, with the
important proviso that all the component parts
of the system are themselves linear.

To summarise what we know about the RC �l-
ter we have the Gain (here for the low-pass �l-
ter) given by

Gain =
Vout
Vin

=
1− jωCR
ω2C2R2 + 1

� Gain is a complex quantity and also a func-
tion of frequency. The plot of Gain vs. fre-
quency is the Bode Plot

� For any frequency ω the Gain gives us the
output sinusoid Vout amplitude and phase
compared to the input Vin

� Output and input sinusoid have the same
frequency ω but an adjusted amplitude
and phase

� The behaviour of the RC �lter is governed
by �rst order ordinary di�erential equa-
tions (for example equation 6.5) hence it
is a �rst-order linear-system

� The time domain response to a step in-
put is the familiar exponential form with a
characteristic time-constant.

Here is where our understanding of signals as
complex quantities (in electronics, Phasors, see
sections 4.3 & 4.4) becomes useful. If we write
the input as a sinusoid

Vin = Aejθejωt

and the gain (evaluated at the frequency ω) as

Gain = Gejφ

then

Vout = Gain× Vin = GejφAejθejωt

As was stated in section 4.3 the time depen-
dent part of the expression is frequently omit-
ted since it is common to input and output.
We can do this because the linear system always
preserves the frequency of the input.

Vout = GAej(θ+φ)

That is to say, the output is the input scaled
by a factor G (the magnitude of the Gain) and
rotated by an angle φ (the phase angle of the
Gain). Now comes the most important point
which will be essential for our future studies.
For a linear system, the output is a linear super-
position of the input. If our input is composed
a several sinusoids, we can apply the above cal-
culation for each input component and sum the
results to get the output. Since Fourier tells us
any input can be decomposed into sinusoids,
this means that the Gain tells us what the out-
put will be for any arbitrary input waveform.
This is profoundly important, as it allows use
to use Fourier (and related) techniques to solve
problems.
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7 Fourier Series of Periodic

Waveforms

We touched on this in Figure 2.1. Wher-
ever there exists periodicity, we should seek
a Fourier representation, and we will see how
a Fourier understanding of signals is essential
in the �eld of instrumentation. In practice,
all physically realistic periodic signals obey the
Dirichlet Conditions8 and are therefore trans-
formable into a Fourier Series. Hence any
signal f(t) with period T can be expressed by

f(t) =

∞∑
n=−∞

αne
jnω0t

=

∞∑
n=−∞

|αn| ej(nω0t+φn) (7.1)

Where the αn are complex constants given by

αn =
1

T

� t0+T

t0

f(t)e−jnω0tdt (7.2)

= |αn| ejφn

= |αn| cosφn + j |αn| sinφn (7.3)

ω0 =
2π

T

Note that ω0 is a constant which is determined
by the repeat-period of our function.

Since the αn are determined from f(t), and vice
versa, they are known as a Fourier Trans-
form Pair. At any time t0 the Fourier expan-
sion of the function converges to f(t0) as long
as the function is continuous at t0. If the func-
tion discontinuous then the Fourier expansion
converges to a point mid-way between the dis-
continuity. If f(t) is real then

α−n = α∗n

f(t) = α0 +

∞∑
n=1

[(αn + α∗n) cosnω0t

+j(αn − α∗n) sinnω0t] (7.4)

8See Poularikas section 3.2

Which can be written in trigonometric form as9

f(t) =
A0

2
+

∞∑
n=1

(An cosnω0t+Bn sinnω0t)

A0 =
2

T

� t0+T

t0

f(t)dt

An =
2

T

� t0+T

t0

f(t) cosnω0t dt

Bn =
2

T

� t0+T

t0

f(t) sinnω0t dt (7.5)

Or

f(t) =
A0

2
+

∞∑
n=1

Cn cos(nω0t+ φn)

Cn =
√
A2
n +B2

n

φn = tan−1
(
Bn
An

)
(7.6)

7.1 The Square Wave

The Fourier expansion of a square wave of am-
plitude 1 and period 1 is

f(t) =
4

π

(
sin t+

sin 3t

3
+

sin 5t

5
+

sin 7t

7
+ · · ·

)
(7.7)

i.e. all the A's are zero, as are all even Bn.
Figure 7.1 illustrates the �rst nine coe�cients
and Figure 7.2 shows the square wave repro-
duced from the �rst 2, 3 and 9 non-zero co-
e�cients. As n increases so does the �delity,
though we are always left with an overshoot of
about 10% at the edges (Gibbs' phenomenon).
Fidelity is worst at the edges, and this improves
rapidly with n. From this we know that sharp-
edges are represented by high-frequencies in the
expansion. We see this if we run a square
wave through a low-pass �lter: the edges are
'rounded o�' (see section 6.5).

9Note that you would not be expected to reproduce
these formulae for an exam!
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Figure 7.1: Square Wave amplitude coe�cients

Related is the fact that the higher harmonics in
the expansion contribute only to the detail of
the waveform. We can see in Figure 7.2 where
the centre plot shows a passable square wave
from just the fundamental plus the 3rd and
5th harmonics. Figure 7.3 a plot of the power-
spectrum (amplitude coe�cients squared, nor-
malised to power of the fundamental). The
higher harmonics contribute a tiny fraction of
the overall signal power.

7.2 The Triangle Wave

The Fourier expansion of a triangle wave of am-
plitude 1 and period 1 is

f(t) =
8

π2

(
sin t− sin 3t

9
+

sin 5t

25
− sin 7t

49
+ · · ·

)
(7.8)

Figure 7.4 shows the �rst 9 coe�cients and sub-
sequent expansion. Note that

1. There are negative coe�cients

2. The coe�cients are similar to those of
the square-wave but scaled by 1/n. This
makes sense when we consider the action

Figure 7.2: Square wave reproduced from the
�rst 2, 3 and 9 non-zero Fourier coe�cients
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Figure 7.3: Power Spectrum for the square
wave

of the low-pass �lter on the square wave
(section 6.7)

7.3 Symmetry

An even-symmetric function has symmetry
about the t = 0 axis (i.e. the same under re�ec-
tion about the vertical axis, e.g. cos(t)), while
an odd-symmetric function has rotational sym-
metry about the origin (unchanged after rota-
tion 180 degrees around the origin, e.g. sin(t)).
The functions considered above are odd which
simpli�es the expansion somewhat according to
Table 7.1 .

7.4 Spectra

Typically, we might specify a spectrum of a sig-
nal by its coe�cients Cn (known as the ampli-
tude spectrum) and their corresponding phases
φn (known as the phase spectrum). The spec-
tra studied in the previous sections are special
cases with zero phase spectra. It is worth not-
ing that choosing an appropriate origin for the
representation of a signal can signi�cantly sim-
plify the expansion in this way10.

10See Poularikas section 3.3

Figure 7.4: Triangle Wave Coe�cients and
Waveform
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Symmetry Functional Form A0 An Bn

Even f(t) = f(−t) Exist Exist 0
Odd f(t) = −f(−t) 0 0 Exist

Table 7.1: Symmetries and Fourier Coe�cients

7.5 Finite Signals

Finite signals, such as a single arbitrary-shaped
pulse within the interval t0 < t < t0+T , can be
represented by assuming that the pulse repeats
in�nitely with period T . The expansion is done
in the normal way but the �nal range of appli-
cability is limited to the range of the original
function11.

7.6 The Energy Relation

Parseval's theorem applied to a signal f(t) ex-
panded as a Fourier series gives

1

T

� t0+T

t0

f(t)2dt =
A2

0

4
+

∞∑
n=1

C2
n

2
(7.9)

If we consider f(t)2 to be the power in the sig-
nal then the LHS of equation 7.9 is the aver-
age power in the signal over the period of 1 cy-
cle. The RHS is the power of the signal in the
frequency-domain, expressed as a sum of the
power of the individual frequency components.

Equation 7.9 is known as the Energy Rela-
tion since it tells us that energy measured in
the time domain is the same as the energy mea-
sured in the frequency domain, a consequence
of conservation of energy.

7.7 Applicability, or use in Rep-

resenting Real Signals

The Fourier series is excellent for describing the
periodic, repetitive signals frequently encoun-
tered in physics and engineering, such as the
square, triangle and sawtooth waveforms and

11See Poularikas �gure 3.13

indeed any arbitrary waveform so long as it has
a repeat period T . We see in the Fourier series
of the square and triangle waveforms (sections
7.1 and 7.2) a fundamental signal at the re-
peat period T which we can recognise in both
time and frequency representations, and we can
see that the fundamental carries most of the
signal power. The Fourier series is very use-
ful where we have a 'steady-state' periodic sig-
nal input into a system. By Steady State
we mean to imply that the signal has existed
long enough that it can be reasonably described
as a Fourier series. Mathematically this would
mean that the signal should have existed for
all time, which is of course not realistic, how-
ever if the signal has existed long enough for
any Transient E�ects to have died away then
this is a reasonable assumption. By transient
e�ects we mean the initial response of the sys-
tem to a sudden start-up of the signal, for ex-
ample of we take a system and suddenly ap-
ply a square wave input then the initial re-
sponse, in say the �rst few cycles of the square
wave, may be rather di�erent from the be-
haviour after a thousand cycles. This is be-
cause many systems have some 'memory' or
inertia. As a simple example imagine push-
ing someone on a playground swing; the pe-
riodic push is the input but it takes some num-
ber of cycles to build up to the full amplitude.
We will come back to these ideas of transient
e�ects later on and see how to deal with them,
however for now it is important to understand
that the Fourier series is an excellent way of
describing periodic signals that have existed for
a time much longer than any time-constant (or
memory) of the system being studied.
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8 Aliasing and the Sampling

Theorem

As suggested in section 5.1, we throw away a
lot of information about a signal when we dig-
itize it because we quantise both time and the
parameter being measured. This is probably
the single most important point to understand
about digitized signals: information lost in the
digitization process is lost forever - there is no
way we can get back the information about
what the signal was doing between samples,
nor can we say anything about the small am-
plitude details which are below the resolution
of our ADC. In the case of the latter, we have
seen how the digitization of the signal can be
characterised as extra noise added to the signal,
which we can understand statistically. Now we
will turn our attention to the e�ect of the for-
mer, that is to say the sampling of the signal
and the quantisation of time. First we will look
at the Sampling Theorem, which is actually
a rule about how to ensure Proper Sampling,
and then we will look at Aliasing, which is the
e�ect we get if we break the sampling theorem
rule, resulting in Improper Sampling.

8.1 The Sampling Theorem

Put simply, a digital signal can only prop-
erly represent frequencies up to one half of the
sample rate (1/Ts, where Ts is the sample pe-
riod). This is somewhat intuitive. What is the
minimum number of points we need to (very
crudely) represent a sinusoid? It's worth trying
to sketch this on a piece of paper, with maybe
10, 5, 3 or 2 points per cycle of the sinusoid.
Join the points with a straight line. It should
be clear that 2 is the absolute limit; it looks
more like a triangle wave than a sinusoid, but
the key point is that it represents the correct
frequency. We'll look at this in more detail in
the next section. The formal statement of the
sampling theorem (also known as the Shannon
sampling theorem, or Nyquist theorem) is that

A continuous signal can only be properly
sampled if it does not contain frequency
components above one half of the sampling
rate.

For example, a sample rate of 2000 samples/s
requires that the original signal only contain
frequencies below 1000 Hz. Half the sample
rate (here 1000 Hz) is called the Nyquist Fre-
quency. If signals above the Nyquist frequency
are present they will be aliased, which means
they will appear as new signals at frequencies
below the Nyquist. This is bad; it is often re-
ferred to as improper sampling.

8.2 Aliasing

This is best illustrated graphically, in the �rst
instance. Figure 8.1 shows some some sinu-
soids before and after sampling. The contin-
uous line is the input and the square markers
are the sampled values. The question is: for
each waveform input can we unambiguously re-
create this from the samples? For the DC in-
put (panel (a), a cosine of zero frequency!) we
can certainly say yes. For panel (b) we might
have a 90 Hz signal sampled at 1 kS/s (kilo-
samples-per-second), so there are more than 11
samples per cycle of the signal. This is clearly
proper sampling, according to Nyquist. For
panel (c) we have only 3 samples per cycle.
Imagine you take away the input (solid line)
and join adjacent dots. The brain still tells
us this is a roughly-drawn sinusoid at the cor-
rect frequency. It turns out that the brain is
very good at this sort of thing. Also, if we
were to put these samples into a Fast-Fourier
Transform program, it would also correctly re-
port the frequency of the signal. This is still
proper-sampling. In (d) we push this further
to just over 1 sample per cycle. Disaster. Both
the brain and the FFT report a sinusoid at the
wrong frequency. This is improper sampling. In
fact, if the sample rate is 1 kS/s and the input
frequency is 950 Hz, then we get a sinusoid of
frequency 50 Hz in the digital data. In general
for an input frequency f and a sample rate fs
then if f > fs/2 we get an alias frequency fa
such that
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Figure 8.1: Graphical Representation of Proper and Improper Sampling (from Smith,
www.dspguide.com)

fa = fs − f

Now, the problem arises that our input signal
may contain frequencies going to values many
times fs so we need to generalise this to

fa = |nfs − f | (8.1)

Where n is an integer chosen to give a value of
nfs as close as possible to f . This may seem a
little confusing but we'll see why this is in the
next section. As an example of this, assume
fs = 100 Hz and the input signal contains all
of the frequencies 25, 70, 160 and 510 Hz added

together. The spectrum of the analogue signal
would show all these frequencies. The spectrum
of the digital signal shows the frequencies 25,
30, 40 and 10 Hz. The �rst is correct, but the
last 3 are aliases.

It gets worse. If we see a signal at 10 Hz in
the digital data we have no means of know-
ing if the original analogue signal was 10 Hz,
90 Hz, 110 Hz, 190 Hz etc. It could be that
all of these signals were present, so all of the
aliases would add on top of the real 10 Hz sig-
nal, thus destroying any knowledge we might
need about the amplitude of the original 10 Hz
signal. This illustrates a key point about alias-
ing: not only does it generate new false fre-
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quencies, it can also destroy information about
the correct, lower frequencies. Because it is so
important, we will study this in more detail in
the �rst lab session.

8.3 The Frequency Characteris-

tics of Sampled Signals

To understand sampling properly, we need to
take a more mathematical approach. This re-
quires a Fourier understanding of our signals,
which is covered in more detail in sections 7 and
12, though you should have done this already in
the 2nd year Fourier course. This is not hard
however, and should lead us to a more com-
plete understanding of sampled signals which is
essential in modern-day experimental physics.
Here again is the equation for the sampled sig-
nal.

fs(t) =

∞∑
n=−∞

f(nTs)δ(t− nTs) (8.2)

One important point to start with is that a sam-
pled signal is fundamentally unlike any other
kind of continuous signal you will have come
across before. According to equation 8.2, the
original signal has been multiplied by a series
of delta functions to create what we might call
an Impulse Train. It is non-zero for values
of nTs, but zero in-between. This gives it a
very complicated spectrum, which we can see
by taking the Fourier Transform of equation 8.2
to get12

Fs(ω) =
1

Ts

∞∑
n=−∞

F (ω + nωs) (8.3)

ωs =
2π

Ts
= 2πfs

12We will cover the Fourier transform in more detail
in section 12. In general, the mathematics for sampled
signals and the equivalent transforms into the frequency
domain are rather involved and beyond the scope of
this course. The result is quoted here to give an under-
standing of the behaviour of the sampled signal under
the Fourier transform but you would not be expected
to derive this.

This shows that the spectrum of the sampled
signal is the same as the original signal, but re-
peated in�nitely along the frequency axis. Fig-
ure 8.2 gives a graphical illustration of this.
Panels (a) and (b) show the original signal and
its spectrum. We can see that the signal is lim-
ited to a band of frequencies below the Nyquist
frequency, so we should be able to sample it
properly. In fact, we are sampling comfortably
above this at about 3 times the highest fre-
quency in the analogue signal. Note that this
signal and its spectrum is highly stylised; real
signals rarely have such neatly compact spec-
tra, as we shall see later, however it illustrates
a principle here.

Panel (c) shows the sampled version of the sig-
nal, in the form of an impulse train, and in
the spectrum (d) we can see the new repeating
frequencies generated by the sampling process.
The reason for this is not straightforward but
once understood does provide a rather satisfy-
ing explanation for aliasing. In equation 8.2
we can see that the original signal was multi-
plied by an in�nite sequence of delta-functions
(the so-called comb function). Now, the Fourier
transform of the comb function happens to be
another comb function13. Further, multiplica-
tion in the time-domain is equivalent to con-
volution in the frequency domain. Therefore,
in the frequency-domain we expect that the
spectrum of the sampled signal is the spectrum
of the original signal convolved with a comb
function. This is why the spectrum repeats in-
�nitely. Note that in the �gure only the posi-
tive frequency range is shown. We know that
the Fourier transform generates negative fre-
quencies as well; this is what accounts for the
part of the spectrum labeled �lower-sideband�.
The spectra �copies� repeat each multiple of the
sample frequency. If we reduce the sample rate
by a factor of two (panel (e)) then the spectra
get closer together (panel (f)) and cross-over
into each other. Recall that in the sampled sig-
nal we only properly represent signals up to the
Nyquist frequency (fs/2) then we see here how
frequencies from the �rst repeated spectrum in-
trude into this range. This is aliasing.

13See the table of Fourier transforms in Poularikas
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Figure 8.2: Sampled Signals in the Frequency Domain (from Smith, www.dspguide.com)
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As a �nal word on the topic, take another look
at the spectrum of the properly sampled signal,
panel (d). We can see that the sampled spec-
trum contains in the range 0 to fs/2 an exact
copy of the original signal's spectrum. This has
2 profound consequences:

1. For proper-sampling, we have not lost any
information as a result of the sampling pro-
cess.

2. If we take the the sampled signal and re-
move all the frequencies above fs/2 then we
will get back to the original signal.

The latter can be done by the use of a low-pass
�lter (section 6.4). This technique is the basis
of Digital to Analogue Conversion, as we will
see later.

8.4 Anti-Aliasing Filters

We are not �nished with aliasing yet. It is such
an important topic for digital signals that a sig-
ni�cant part of the discipline of Digital Signal
Processing (DSP) is devoted to dealing with
it. As seen in the previous section, if our signal
is contained within a narrow band of frequen-
cies below the Nyquist, then all is OK. However
in practice this is rarely the case for two rea-
sons:

1. Real signals (either pulses or repetitive
waveforms) tend to have mathematically
in�nite waveforms (for example the square-
wave, section 7.1). While no real signal
is mathematically perfect, any signal with
rapid changes (what engineers call �edges�)
has a very wide spectrum

2. All signals contain some noise, and noise is
usually broadband, i.e. existing right across
the frequency spectrum

In order to prevent these high frequency com-
ponents aliasing into our digitized signal, it us
usually preferable to remove them from the sig-
nal before sampling. Note that this is a com-
promise solution: if we �lter out high frequency

parts of our signal we certainly degrade it, how-
ever the problem of aliasing is so bad that this is
usually a price worth paying. Figure 8.3 shows
a DSP system as it should be setup. Imagine
this is an audio system, then the analogue in-
put on the left is a voltage signal coming from
a microphone. The �rst stage is a �lter de-
signed to remove frequency components above
the Nyquist frequency. This is called the Anti-
Alias Filter. The signal is then sampled and
digitized by the ADC and can then be stored
and processed by the computer (central box).

Note that once the signal is in a digital
form we can do all sorts of things to it such
as �Equalisation� which generally means
adjusting the relative amplitudes of di�er-
ent frequency components. �Bass-boost�
is a common process designed to counter-
act the fact that cheap headphones typi-
cally have a very poor bass-response. We
will see this for real in later lab-sessions.
Another popular equalisation is �loudness�.
This is intended for quiet listening where
the human ear, under quiet conditions, has
poor response at the very low and high
ends of the frequency range. The loudness
feature boosts these extremes of frequency
but leaves everything in the middle �at.

Everything to the left of the diagram is the
recording system. The right side is �playback�.
As mentioned in the previous section we need
a Digital to Analogue Converter and another
�lter to properly reconstruct the original ana-
logue signal, which then drives the speakers.
It's worth noting that all of this, and of course
much more, is contained within the modern
iPod.

Entire books have been written on the subject
of anti-alias �lters, and electrical engineers re-
ceive complete lecture courses on �lter design.
For our purposes, including the lab-sessions, we
will use the simple RC low-pass �lter discussed
in some detail in section 6. The ideal �lter
would have a very sharp cut-o�, that is to say it
would allow through all frequencies below the
Nyquist and completely block anything above.
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Figure 8.3: Correctly Setup Digital Signal Processing System (e.g. iPod) (from Smith,
www.dspguide.com)

Figure 8.4: Response of the RC Low-Pass Filter

Unfortunately this is impossible. In the case
of the RC low-pass �lter we usually and choose
the -3 dB frequency of the �lter to be the same
as the Nyquist frequency of the sampling. The
details of this will be covered in section 6 and
the lab-sessions. This is however a compromise,
as can be seen in �gure 8.4. This �lter would be
suitable for a sampling with Nyquist of 1 rad/s.
Some frequencies below the Nyquist are atten-
uated (undesirable) and also some frequencies
above the Nyquist will still exist (also unde-
sirable). Filters with a sharper �cut-o�� are
possible, but beyond the scope of this course14.

14For more information, see Smith chapter 3 at
www.dspguide.com and also Horowitz & Hill chapter 4

40

http://www.dspguide.com
http://www.dspguide.com


9 Di�erential Signals

9.1 Single-Ended Signals

In all of the discussions so far to do with electri-
cal signals we have considered our signal to be a
voltage relative to ground potential (zero volts).
This means that we would measure the signals
- e.g. with a Digital Multi-Meter (DMM) or os-
cilloscope - by connecting the black lead of the
meter to ground and the red lead to the mea-
surement point. These signals are known as
Single-Ended signals. In principle, a single-
ended signal can be carried from A to B on
a single piece of wire, that is to say if A and
B are two di�erent units (such as experiment
and oscilloscope) then we only need a single
wire to transmit the signal. This assumes that
the zero-volts ground at A and B is the same.
There are reasons why this might not be ex-
actly true, which we will look at later in the
course when we study noise. It is for this rea-
son that it is standard practice, when probing
a circuit, to connect the black lead of the scope
to a ground-point as close as possible to the
point where you are probing. Furthermore, for
practical purposes when we want to transmit
a real signal from A to B we might use some-
thing like a piece of co-axial cable whereby the
outer shield (the outer conductor in the co-ax,
usually a braid of �ne wires woven together) of
the cable is connected to ground at both ends.
A drawing of this kind of setup was given in
lectures (the section on co-axial cables). This
kind of con�guration ensures that �ground� has
the same potential at both ends of the line, so
that the signal we are measuring has the same
amplitude at both ends.

9.2 Di�erential Signals

While the single-ended signal is of course al-
ways speci�ed as being relative to ground po-
tential, the Di�erential Signal has the subtle
di�erence that it is relative to some other po-
tential (which is itself usually not ground). As
an example of this consider a sensor which has
two-terminals and produces an output across

Figure 9.1: Di�erential Signal

these terminals which is a small time-varying
voltage. An example of such a sensor might be
an accelerometer or a strain gauge. We are only
interested in the di�erence between the two ter-
minals. We don't care what the actual potential
of either terminal is relative to ground; the sen-
sor information is a Di�erential Signal. This is
illustrated in �gure 9.1. Here the potentials of
each line appear to be varying about a level of
2.5V (upper traces). The di�erential signal is
determined by taking the di�erence of the two.

We can de�ne the di�erential signal as

VD = V+ − V−

9.3 Common-Mode Signal

The Common-Mode Signal is de�ned as follows

VCM =
V+ + V−

2

This is the common level about which both ter-
minals vary, here 2.5V. In practice, VCM is the
average value of the potentials at the two ter-
minals, at any time.

The main point to consider here, is that VD
represents the signal that we want to measure,
while VCM represents some kind of background
which we are not interested in. In order to
bu�er and amplify our small di�erential signal
we will make use of a Di�erence Ampli�er
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9.4 Di�erence Ampli�ers

Recall that a standard op-amp is itself a dif-
ferential ampli�er since the output obeys the
equation Vout = A(Vin+ − Vin−). However
we have a very high gain and use our op-amp
in closed-loop mode so we operate with feed-
back such that (in the IGA approximation)
Vin+ − Vin− ≈ 0. Further, one of our inputs
is usually connected to ground (see the invert-
ing ampli�er design for example). It may not
be desirable to connect one of our sensor termi-
nals to ground. In this case it would short our
common-mode voltage to ground which could
have undesirable consequences for the opera-
tion of the sensor. Another reason is that this
could add noise to our sensitive measurement
(as we will see later, ground is not necessar-
ily a �clean� zero volts; there can be signi�cant
amounts of low and high frequency noise on the
ground). In order to preserve the isolation of
our sensor terminals from ground we need a
special sort of ampli�er called the Di�erence
Ampli�er, or ultimately the Instrumenta-
tion Ampli�er. The circuits for these will be
covered in lectures and also in section 10.

9.5 Common-Mode Rejection

The main points to consider when choosing a
di�erence ampli�er are

� The isolation from ground at the 2 inputs
(ideally very high)

� The ampli�cation of the di�erential volt-
age (we would like to choose this)

� The ampli�cation of the common-mode
voltage (ideally zero)

Since no ampli�er is perfect there will al-
ways be some common-mode voltage which gets
through the ampli�er and appears on the out-
put. In practice the output voltage is given by

Vo = AD(V+ − V−) +
1

2
ACM (V+ − V−)

Figure 9.2: Noise Rejection in Di�erential Sig-
nals

Ad is the Di�erential Gain and we want
this to be large. Acm is the Common-Mode
Gain and we want this to be small. For
any particular ampli�er design which we might
choose to build we can calculate or measure the
Common-Mode Rejection Ratio (CMRR)
which is usually given in dB and de�ned as

CMRR = 20 log10

AD
ACM

CMRR is therefore a �gure-of-merit for a dif-
ference ampli�er design. The AD620 Instru-
mentation ampli�er from Analog Devices has
a CMRR of 100dB, which is very high per-
formance. More specialist devices can achieve
120dB or more.

9.6 Noise Rejection

An advantage of working with di�erential sig-
nals is illustrated in �gure 9.2. Here the signal
is represented by a di�erential pulse. We know
that wires can act as aerials to pick-up noise
from radio waves or other signals elsewhere in
the same circuit. However, if the two wires
which carry the di�erential signal are reason-
able close to each other then it is reasonable to
assume that the amount of noise picked-up will
be the same on both. That is to say, the noise
is a common-mode signal. This means that the
ampli�er will remove this noise.
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10 Instrumentation Ampli-

�er

The Instrumentation Ampli�er is widely
used in scienti�c apparatus because of its �exi-
bility and performance. We'll study it in some
detail because it summarises in a single cir-
cuit more-or-less everything that we need to
know about ampli�ers and their practical ap-
plications. This is easily the most complex op-
amp circuit that we'll cover in this course, and
while it looks taxing at �rst glance we'll see
that by breaking the design down into its com-
ponent parts and applying the simple rules for
op-amp circuits, the analysis of the instrumen-
tation ampli�er is quite simple.

Firstly we'll summarise the properties of the
instrumentation ampli�er:

� High Di�erential-Mode Gain (AD) and
very low Common-Mode Gain (ACM ),
which means it ampli�es the di�erence be-
tween two inputs and doesn't respond to
identical (common) voltages.

� Consequently it has a very high
Common-Mode Rejection Ratio
(typically 100 dB)

� High input impedance on both inputs, so
we can connect it across any 2 points in the
circuit where we might wish to measure the
potential di�erence, without a�ecting the
operation of the circuit.

The starting point for the instrumentation am-
pli�er is the simple di�erence ampli�er which
we covered in lectures, so we'll recap this in the
next section

10.1 Di�erence Ampli�er

Note �rst that the op-amp is fundamentally
a di�erence ampli�er since it obeys the rule
Vout = A(Vin+ − Vin−) and in lectures we have
seen how to use this to make practical ampli-
�ers such as the inverting op-amp circuit. This
works �ne for many applications, however you

Figure 10.1: The Di�erence Ampli�er (Diefend-
erfer chapter 9)

will notice that the non-inverting input is al-
ways connected to ground. This means we are
always amplifying a voltage relative to ground
potential. In some circumstances this is unde-
sirable. Consider for example a complex exper-
imental setup within which we want to mea-
sure the voltage across a single resistor (maybe
because we want to be able to calculate the
current through it). Connecting the inverting
op-amp circuit across the resistor would con-
nect one side to ground, probably stopping our
circuit from working properly. The solution to
this may be to attach some more resistors to
the non-inverting input. The result is the Dif-
ference Ampli�er as shown in �gure 10.1.

10.1.1 Circuit Analysis

To analyse this circuit we need Kirchho�'s Cur-
rent Law which states that the sum of all
the currents into any node in the circuit is
zero, Σi = 0. Separating the top and bottom
branches from the op-amp � as done in the lec-
tures for the non-inverting ampli�er � we get
(�gure 10.2)

I1 =
V1 − VA
R1

=
VA − Vout

Rf

Solving for VA
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Figure 10.2: Circuit Analysis for the Di�erence
Ampli�er (Diefenderfer chapter 9)

VA =
V1Rf + VoutR1

R1 +Rf

For the other branch, we can do the same, or
since the bottom of the circuit is connected to
ground we can just treat it as a voltage divider
and write

VB =
V2R3

R2 +R3

Since op-amp rule 1 requires that VA = VB we
can solve for Vout to yield

Vout = V2

(
R3

R1

)(
R1 +Rf
R2 +R3

)
− V1

(
Rf
R1

)

Now if we choose to set R2 = R1 and R3 = Rf
then we get

Vout = (V2 − V1)

(
Rf
R1

)
(10.1)

This simple equation describes the di�erence
ampli�er, which has a number of useful appli-
cations in situations where we can guarantee to
match the requirement R2 = R1 and R3 = Rf .
However there are a couple of drawbacks with
this design as we shall see in the next section.

10.1.2 Problems with the Di�erence
Ampli�er

1. If we don't match R1 = R2 and R3 = Rf
exactly then we get a Common Mode
Signal at Vout as well as the Di�erential
Signal that we want (see section 9 and also
the box below). Any common mode signal
is an error signal, since it depends on how
carefully you build the ampli�er circuit.

2. It has a relatively low input impedance (at
V2 this is equal to R2 + R3). This can
cause us to `load' the signal we are try-
ing to measure by drawing current from it.
You may be wondering why we don't just
make the values of the resistors very large,
say some MW? The problem with this is
that the inputs of the op-amp inevitably
have some stray-capacitance, so we would
have a time-constant e�ect which would
slow-down voltage swings at the input. We
need to keep R2 +R3 to be some kΩ.

Common Mode Gain As an exercise,
consider what happens if we set DV = 0,
i.e. V1 = V2 = v and also R2 = αR1,
R3 = βRf . You should �nd that for any
non-zero common-mode input voltage v
you get a non-zero output voltage, which is
highly undesirable. Further, you can �nd
the common mode gain

ACM =
Vout
v

You should discover that this is a linear
function of (β/α− 1). The ideal for the dif-
ference ampli�er is to ensure α = β = 1
hence ACM = 0

Recalling that op-amps are small and cheap,
we can make use of the high-input impedance
Bu�er or Voltage Follower circuit. The sim-
plest thing to do would be to just attach a
bu�er to each of the inputs at V1 and V2. This
completely solves the input impedance prob-
lem � the points in the circuit we are trying
to measure are now isolated from our di�erence
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ampli�er by the bu�er impedances, which can
be ∼ 109Ω. However, the common-mode prob-
lem (problem (1) above) remains. The reason
is that the di�erence ampli�er is trying to do
two jobs: both reject common-mode signals and
amplify di�erential mode signals. We can im-
prove this situation by moving some of the gain
into the input stage, which relaxes a bit the re-
quirement to match the resistors. This design
is known as the Instrumentation Ampli�er.

10.2 Classic Instrumentation

Ampli�er Design

The design of the classic Instrumentation Am-
pli�er is shown in �gure 10.3. We can split the
analysis into the input stage and the output
stage, and note that the output stage is already
done as it is essentially the di�erence ampli�er
we have just seen.

10.2.1 Input Stage

This is everything to the left of R3. We can
analyse this in the usual way. Rule 1 tells us
VA = V1 and VB = V2. So the current in the
three resistors

I =
VA − VB
R2

=
V1 − V2
R2

Hence

VC = V1 + IR1 = V1 +

(
R1

R2

)
(V1 − V2)

VD = V2 − IR1 = V2 −
(
R1

R2

)
(V1 − V2)

What we can see here is that each bu�er op-
amp produces an output equal to its input plus
an ampli�ed version of the di�erence between

the two inputs. So, we can say that the input
stage gives us a common-mode gain ACM = 1,
and a di�erential mode gain AD � 1. This is
a good start.

10.2.2 Output Stage

Since the output stage is the di�erence ampli-
�er we looked at earlier, we can use equation
10.1 to write

Vout = (VD − VC)

(
R4

R3

)
Substituting in the equations for VC and VD

Vout =

(
R4

R3

)(
V2 − V1 − 2(V1 − V2)

(
R1

R2

))
= (V2 − V1)

(
R4

R3

)(
1 + 2

(
R1

R2

))
So, the ampli�er produces a voltage output
which is proportional to the di�erence between
the two input voltages. In this stage, the
common-mode gain is zero. We haven't elim-
inated the need to choose our resistors care-
fully, but we have spread the ampli�cation over
the two stages of the circuit, and at each stage
we maximise the di�erential gain, and minimise
the common mode gain. It is worth going back
to the de�nition of the instrumentation ampli-
�er at the beginning of section 10 to check that
you understand why it has all of the stated
properties.

10.3 Applications

The instrumentation ampli�er can be used
wherever we want to measure the voltage across
any circuit element without connecting either
side to ground. For example we might imag-
ine that the input of a multi-meter looks like
the instrumentation ampli�er because we can
connect across any 2 points in a circuit without

1. drawing any current from the circuit
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Figure 10.3: Instrumentation Ampli�er (Diefenderfer chapter 9)

2. shorting the connection point to ground

The instrumentation ampli�er is most useful
in applications such as a strain gauge where
we have a small di�erential signal (represent-
ing the measurement) superimposed on a large
DC level on each terminal (the common-mode
signal). The DC level on the terminals can �uc-
tuate; it doesn't matter since the instrumenta-
tion ampli�er only responds to the di�erence
signal.

10.4 Integrated Circuit Instru-

mentation Ampli�ers

These days the semiconductor industry pro-
vides a `ready-made' implementation on a sin-
gle chip. One such device is the Analog De-
vices AD620 (�gure 10.4). This has a CMRR
(Common Mode Rejection Ratio) of 100dB and
a di�erential gain adjustable up to 1000 set by
an external gain resistor connected across pins
1 and 8 (this is R2 in our circuit). All the other
resistors are inside. The advantage of these de-
vices is that the internal resistors have been
matched to be as close as possible. This is
done by laser-trimming the individual resistors
for each part. Because they are manufactured
in quantity, this process becomes cost e�ective
and the AD620 retails for less than $10.

Figure 10.4: Pin Connections for the Analogue
Devices AD620 Instrumentation Ampli�er

Nevertheless, especially for high-end physical
science applications, sometimes you may need
to build your own ampli�er directly from op-
amps, as described above. In measurement sci-
ence, it is also useful to know a bit about what
goes on inside the 'black-box'. Also, if you can
understand how the instrumentation ampli�er
works then you have all the basic skills need to
understand more or less any of the commonly-
used op-amp circuits!
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11 Linear Systems

We can characterise a physical system by its
ability to accept an input parameter and pro-
duce an output in response. Our understanding
of a sensor, or transducer, is a perfect example.
we will now examine this relationship between
input and output in more detail.

Systems can be linear or non-linear. A Lin-
ear System is one for which a linear relation
exists between cause and e�ect. An obvious
example is a spring for which force is directly
proportional to extension. However, for many
systems such a casual inspection will not tell
us whether it is linear or Non-linear. Take for
example the RC �lter. We can satisfy ourselves,
after consideration, that it is linear since at any
given frequency the gain is independent of the
input. So, doubling the input voltage doubles
the output voltage. To determine whether a
system is linear or not we need to examine the
mathematical formulation of the input/output
relationship. The reason we are interested in
this is because we can use quite simple mathe-
matics to understand and predict the behaviour
of really very complex systems.

11.1 Linear Time-Invariant Sys-

tems

The time response to an arbitrary forcing func-
tion can be described by a di�erential equation
of the form

a0x+ a1
dx

dt
+ a2

d2x

dt2
+ · · · an

dnx

dtn
=

b0y + b1
dy

dt
+ b2

d2y

dt2
+ · · · bn

dny

dtn
(11.1)

where an and bn are constants, x(t) the out-
put of the system and y(t) a forcing function.
Systems which are described by such a di�er-
ential equation are often termed Linear Time
Invariant or LTI systems. The Time Invari-
ance comes from the fact that the behaviour of

the system (its di�erential equations) does not
vary with time, that is to say the behaviour,
under a given input, is the same today as it
was yesterday. LTI systems have two impor-
tant properties.

Frequency Preservation If the input to an
LTI system is a sinusoid then the output is also
a sinusoid of the same frequency, but it may
have its amplitude and phase modi�ed.

Superposition If the input to an LTI sys-
tem is the sum of several sinusoids then the
output of the system is the sum of the system
response to each individual sinusoid in isola-
tion.

11.2 Use of Fourier Techniques

The properties of superposition and frequency
preservation allow us to apply useful Fourier
techniques to real world problems involving LTI
systems. Any real world signal can be Fourier
decomposed into a sum of sinusoids of suitable
frequency, phase and amplitude, and we can fol-
low the propagation of each sinusoid through
an LTI system (each component will have its
phase and amplitude modi�ed) and then sum
the output sinusoids to recover the response of
the system to the original signal. We can see
from these properties that if we add several LTI
systems together in series then the resultant
system is also LTI.

We will see how to apply these ideas later on.

The most common systems we come across
in instrumentation are quite well described by
rather simpli�ed versions of equation 11.1. It
is worth brie�y revising how simple zero, �rst
and second order systems respond to a simple
forcing function such as a step u(t) or an im-
pulse δ(t). The aim of this section is to brie�y
run through some of the background mathe-
matics, particularly for the second order sys-
tem. Note that the second order system is just
the damped simple harmonic oscillator, looked
at from the instrumentation perspective. As
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Figure 11.1: Frequency Preservation of LTI Systems

Figure 11.2: Superposition Property of LTI Systems

such you will already have covered it a num-
ber of times before in other courses. What
we typically �nd is that whilst the di�erential
equations describing isolated zero, �rst and sec-
ond order systems are generally quite tractable
mathematically, it can be extremely di�cult to
both formulate and solve a di�erential equation
describing the behaviour of a more complex in-
strument composed of several distinct elements.
However, as suggested above there are solutions
to this based on Fourier techniques, which we
will come on to later.

11.3 Zero-Order Systems

Zero order systems are described by an equa-
tion of the form

a0x = b0y

where ao and bo are constants, y(t) is the in-
put or forcing function applied to the system,
and x(t) its output. They thus represent the
most trivial of LTI system. This type of system
should respond immediately to a changing in-
put in time, and has no �memory� as such. Zero
order systems don't care what has happened to
them in the past, only what the state of the
input is now. This type of behaviour would
be ideal for a sensor, we would get in�nitely

Figure 11.3: Variable Resistor (or potential di-
vider) used to measure displacement

fast time response, and no problems with oscil-
lation, overshoot, settling times and so forth.
Unfortunately such systems are extremely rare
in real life instruments, but we will look brie�y
at them to provide us with some scene setting
examples. A good example of a zero order sys-
tem would be a variable resistor (Figure 11.3).
The input to the system y(t) is the position
of a pointer along the resistor, and the output
x(t) is a voltage Vout that appears at the end of
the pointer arm. For the zero order case Vout
exactly follows y(t), and at any time,

Vout =
V y(t)

L

where V is the voltage across the full length L
of the resistor. Any change in y(t) gives an im-
mediate corresponding change in Vout. As soon
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as y(t) stops changing, so does Vout. This how-
ever is unphysical for a real world system, and
in our example e�ects such as the slight �ex-
ing of a mechanical pointing arm as it moves
or stray inductive or capacitive e�ects would
stop Vout exactly tracking y(t). More gener-
ally we will have to formulate and solve a dif-
ferential equation to �nd the time response of
a system to any given input. However under
certain conditions there are some real physical
systems which are zero-order. For example an
idealised ampli�er is zero order: the output is
simply (and always) an ampli�ed version of the
input.

The zero order system is characterised by the
Gain, or more generally Static Sensitivity
(also known as Steady State Gain)

Ks =
b0
a0

=
V

L
Volts/m

11.4 First Order Systems

First order systems are described by a di�eren-
tial equation of the form

a1
dx

dt
+ a0x = b0y

The rate of change of the output x(t) is thus
proportional to the di�erence between the sys-
tems current state (at a given point in time)
and the value of the forcing function. To solve
a di�erential equation of this type we generally
try a test solution of the form x(t) = Aest + c
where A, sand c are constants. We then apply
boundary conditions to �nd the values of these
constants. We applied this method to anal-
yse the behaviour of the RC circuit in section
6.5. Here we'll apply it to another simple sys-
tem, a thermometer plunged into a heat-bath
. The rate of heat �ow into the thermometer
is proportional to the di�erence between the
temperature of the thermometer θ(t) and the
heat reservoir θR. Our boundary conditions are
that at t = 0 the thermometer is at its starting
temperature θ0 and for t → ∞ the thermome-
ter reaches the same temperature as the heat
reservoir. The solution is

Figure 11.4: Thermometer in Heat-Bath

Figure 11.5: Room temperature thermometer
plunged into a nice hot cup of tea

θ(t) = θ0 + (θR − θ0)(1− e−t/τ)

where τ is a time constant dependent on the
conductivity of the thermometer, the heat bath,
and the thermal mass of the thermometer. τ is
the time taken for the system to reach 63.2% of
its steady state response, after the application
of a step input. This type of time response is
very common in instrumentation, see the hand
out on the AD950 temperature sensor for an ex-
ample. We often refer to the sort of plot shown
in �gure 11.5 as an RC curve, as it follows the
form of the voltage across a capacitor as we
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charge it up from a DC source through a resis-
tor. The system initially responds rapidly to a
step input, as the di�erence between its start-
ing point and the steady state value is large. As
time progresses, the di�erence between steady
state and actual value becomes smaller, and
the rate of change falls o� correspondingly. Af-
ter a su�ciently long time the system reaches
its steady state value, though for a real sen-
sor, the time taken to reach 95% of its steady
state value, or just the time constant τ will be
given on the data sheet. Referring back to our
de�ning di�erential equation for a �rst order
system, we see that the steady state response
(static sensitivity) is as before given by

Ks =
b0
a0

On a �nal practical note, remember that all the
elements of an instrument will each have some
individual time response, and these have to be
matched to each other for best results. There is
no point using an ultra fast sensor if the rest of
the system simply cannot keep up with it. The
time response of the whole system is a convo-
lution of all the individual time responses.

11.5 Second Order Systems

Second order systems are described by a di�er-
ential equation of the form

a2
d2x

dt2
+ a1

dx

dt
+ a0x = b0y (11.2)

This as the de�ning equation of a damped sim-
ple harmonic oscillator. A good example of
this type of system in instrumentation is a
spring balance ( �gure 11.6, although there are
many non-mechanical physical analogues). Sec-
ond order systems can show the type of de-
layed time response to a step input that we
saw in �rst order systems, but they can also
oscillate after a step u(t) or impulse δ(t) in-
put. We can begin by summing all the forces
that act on the mass m. There is a gravi-
tational force mg, a force due to the exten-
sion of the spring kx(t), a velocity dependent

Figure 11.6: Spring Balance

damping term cdx/dt and an acceleration term
md2x/dt2. Summing all the forces on the mass
gives ΣForces = Mass � Acceleration

m
d2x

dt2
+ c

dx

dt
+ kx = mg

There are several limiting cases of the be-
haviour of this system that are easy to �nd.
For the steady state case there are no changes
as a function of time and d2x/dt2 = dx/dt = 0,
the response is the same as a zero order sys-
tem. The static response of the system is thus
mg = kx therefore the static sensitivity is

Ks =
b0
a0

=
g

k

and therefore in the steady-state case x = mKs

Note that here we take our forcing function to
be m, the mass hung on the balance.

11.5.1 Solving the Second-Order Di�er-
ential Equation

We want to �nd the solution of equation 11.2.
To �nd a general solution of this equation, we
try a test solution of the form x(t) = Aest,
and for simplicity we will take y = 0 (i.e. no
input, or zero forcing function). Substituting
into equation 11.2 gives

a2As
2est + a1Ase

st + a0Ae
st = 0
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Here we use the fact that zero is a valid solution.
Solving for s we �nd

s =
−a1 ±

√
a21 − 4a2a0

2a2

=
−a1
2a2
±

√
a21

4a2a0
− a0
a2

Whether the roots of this equation are zero,
real or complex will have a major e�ect on how
the system responds to a changing input. We
simplify this equation by setting

ω2
0 =

a0
a2

ξ =
a1

2
√
a0a2

Substituting these two expressions into the so-
lution gives

s = −ξω0 ±
√
ξ2 − 1

with two roots s1 = −ξω0 +
√
ξ2 − 1 and s2 =

−ξω0 −
√
ξ2 − 1. As we have two roots the

general solution for the second order di�erential
equation is

x(t) = Aes1t +Bes2t

where A and B are constants. For physically
realistic values of ω0 and ξ the solution is typi-
cally an exponentially-decaying sinusoid, as we
will see in the following section. Note that here,
to simplify the solution, we took y = 0. This is
the Zero Input Solution, but it is not trivial
since it just speci�es that there is no input to
the system. However the system could already
be in motion (dxdt 6= 0) due to some previous
excitation. Alternatively, we could have spec-
i�ed that the system was stationary at some
non-zero x position and then 'let-go' at t = 0
(this would be equivalent to pulling-down the
spring-balance then releasing it at t = 0). We
will come back to this later but for now it is
important to understand that the initial condi-
tions of the system are essential to understand
future behaviour.

11.5.2 Behaviour of the Damped Har-
monic Oscillator

Returning to our spring balance example, we
have

ω2
0 =

a0
a2

=
k

m

ξ =
a1

2
√
a0a2

=
c

2
√
mk

ω0 is the Natural Frequency of the system
and ξ is the Damping Ratio. For the zero
damping (c = 0 =⇒ ξ = 0) case any distur-
bance of the system will result in free running
oscillations at a frequency ω0. This type of free
running behaviour is almost always a bad thing
for an instrument. After all we want to use it to
measure the forcing function. We will however
see that allowing a little oscillation to occur can
actually be a good thing for an instrument, im-
proving its time response at the cost of some
small and rapidly damped oscillations after an
abrupt change to the input. The behaviour is
summarised in �gure 11.7 which gives the re-
sponse of the balance to a step change input,
i.e. suddenly placing the mass m on the bal-
ance at time t = 0. The plots are normalised to
show a unit-response and give 6 di�erent values
of ξ = 0, 0.01, 0.1, 0.5, 1 and 3 (in the order left-
to-right and top-to-bottom). For ξ = 0 we have
free running at ω0. This would be disastrous in
a real balance since we want to use the Static
Response to determine the mass, i.e. we want
the balance to settle. For ξ = 0.01 and 0.1
the system is Under-damped. ξ = 0.6 is the
kind of behaviour we might expect from a real
spring-balance as it is probably the optimum:
some oscillation but rapidly reaching equilib-
rium. A car's suspension also has this sort
of behaviour. ξ = 1 is Critically Damped
- there is no oscillation but the system takes
quite a time to reach the equilibrium. The
spring closers for doors might be designed for
this sort of behaviour. ξ = 3 isOver-damped;
the behaviour is reminiscent of the �rst-order
system.
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Figure 11.7: Response of the spring-balance to a unit step-change input for ξ = 0, 0.01, 0.1, 0.6,
1 and 3. The natural frequency is 1 Hz.
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Figure 11.8: The RLC Circuit

11.5.3 The RLC Circuit

The RLC Circuit is the electrical analogue of
the damped mechanical oscillator. In fact we
can use an analogue electronic system to sim-
ulate a complex mechanical system because of
this equivalence. Whilst this is quite a pow-
erful technique it has to a great extent been
superseded by numerical computer simulations
these days. In the RLC circuit we have the
equivalence with the damped spring balance or
damped harmonic oscillator as per table 2.1

As with the mechanical spring-balance we can
determine the di�erential equations which gov-
ern the behaviour through use of some physical
laws of conservation; in this case we use Kirch-
ho�'s Voltage Law

VR + VC + VL = Vin

which we can re-write as

iR+ L
di

dt
+

1

C

� t

−∞
i(τ)dτ = Vin

If we take Vin to be a step input at t = 0 then
for all times t > 0 we can write

L
d2i

dt2
+R

di

dt
+

1

C
i = 0

Therefore the series RLC circuit shows the
same sort of transient response as the mechan-
ical oscillator.

ω2
0 =

a0
a2

=
1

LC
(11.3)

ξ =
a1

2
√
a0a2

=
R

2

√
C

L

ω0 is again the natural frequency of the circuit.
We can understand the frequency-domain be-
haviour of the circuit best using the complex
impedance approach given in section 4.5. The
total impedance of the circuit is given by

Z = R+ jωL− j

ωC

Since R is �xed, the circuit has a minimum
impedance for

jωL =
j

ωC

Which is the same result as equation 11.3. Fur-
ther since Z is a function of frequency it is in-
teresting to plot the response of the system as
a function of frequency. Figure 11.9 shows the
current �owing in the circuit as a function of
frequency. For this �gure, we take L = R =
C = 1 and the applied voltage is 1 in ampli-
tude and swept in the range ω = 0.01 . . . 100.
The Resonance at ω0 = 1rad/s is clearly vis-
ible15. At the resonance, the reactive part of
the impedance is zero, so we have only resis-
tive impedance, hence the current is 1 amp.
At low frequencies the impedance Z → ∞ be-
cause of the capacitor and at high frequen-
cies Z → ∞ because of the inductor. There-
fore the overall shape of the curve is physi-
cally understandable. The mechanical oscil-
lator would also show a similar behaviour in

15Note that the Natural Frequency is the un-driven

oscillation frequency, as we saw for the spring-balance
where y = constant. For the RLC circuit we found
the Resonant Frequency under driven conditions (swept
sinusoid input). In general for second-order systems the
natural frequency and resonant frequency are close but
not identical. But the RLC circuit is one where they
are identical.
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Figure 11.9: Current �owing in the RLC circuit
as a function of frequency

response to a swept-sinusoidal forcing function
(force). Moreover, the RLC circuit will show
similar time-domain response to a step-input.
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12 Fourier Transform of

Non-periodic Signals

Often we want to represent a single discrete
pulse such as the rectangular pulse Pa(t) (see
section 2.3.2). We said in section 7.5 that this
is possible by specifying the pulse as a peri-
odic function but only applicable over a lim-
ited range (for example a square wave with pe-
riod T = 2a but de�ned only on the interval
0 < t < T ). This is frequently inconvenient,
and in any case we may want a mathematical
representation that is genuinely zero for all time
other than the period when the function acts.
For example the statement that �a pulse Pa(t)
acts on a system� requires that the input is zero
for all |t| > a. Of course we could calculate
the Fourier series for the pulse, but we would
�nd (in contrast to periodic functions) that we
need a seriously large number of terms in the
series. The solution then is the Fourier Inte-
gral, which is after all just the limiting case of
the Fourier Series as the period T →∞.

12.1 Fourier Transform of a

Continuous-Time Function

The Fourier Transform of a continuous func-
tion f(t) is written F{f(t)} = F (ω) and the
inverse is f(t) = F−1{F (ω)}. So we have the
Forward Transform:

F{f(t)} = F (ω) =

� ∞
−∞

f(t)e−jωtdt (12.1)

and the Inverse Transform:

f(t) = F−1{F (ω)} =
1

2π

� ∞
−∞

F (ω)ejωtdω

(12.2)

F (ω) is the Spectrum Function of f(t).
If F (ω) is complex we would usually rep-
resent it as a plot of the real and imagi-
nary parts versus ω. Sometimes it is more
useful to plot the absolute value |F (ω)| =

Figure 12.1: f(t) = u(t)e−t

√
<{F (ω)}2 + ={F (ω)}2 and the argument

ArgF (ω) = tan−1(={F (ω)}/<{F (ω)}) in
which case |F (ω)| is called the Amplitude
Spectrum and ArgF (ω) is the Phase Spec-
trum.

12.2 Fourier Transform of Real

Functions

Physical signals are real continuous functions
of time. Consider the function f(t) = u(t)e−t

(�gure 12.1) which has the Fourier transform

F (ω) =
1

1 + jω

The real, imaginary, magnitude and argument
representations of the spectrum are given in �g-
ure 12.2.

There are some rules for real functions which
are useful for our studies

Real Functions The re�ected form of the
spectrum (i.e. re�ected about the ω = 0 axis)
is the complex conjugate of the spectrum

F (−ω) = F ∗(ω)
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Figure 12.2: F (ω) representations in terms of <{F (ω)} and ={F (ω)} (top two panels) and
Magnitude and Phase spectrum (bottom two panels)

Real and Even Functions The imaginary
part of the spectrum is zero, and we can calcu-
late the real part by

<{F (ω)} = 2

� ∞
0

f(t) cos(ωt) dt

={F (ω)} = 0

Real and Odd Functions Conversely

<{F (ω)} = 0

={F (ω)} = −j
� ∞
−∞

f(t) sin(ωt) dt

Since, for most practical purposes, we can
choose where to take the origin, these rules

can simplify calculation of the Fourier trans-
form (see also the Time Shift .

property below)

12.3 Properties of the Fourier

Transform

Linearity

F{af1(t) + bf2(t)} = aF1(ω) + bF2(ω)

Time Shift

F{f(t± t0)} = e±jωt0F (ω)

Frequency Shift

F{e±jω0tf(t)} = F (ω ∓ ω0)
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Scaling

F{f(at)} =
1

|a|
F
(ω
a

)

Derivative

F
{
dnf(t)

dtn

}
= (jω)nF (ω)

12.4 Fourier Transform of some

Common Signals

The Pulse function and the delta function are
both important signals for instrumentation ap-
plications. We may be trying to measure the
height and/or width of a pulse generated by
in an experiment. In order to understand how
our instrument will react to the pulse, we need
an understanding of the pulse's frequency con-
tent. The delta function, because of its special
frequency content, is frequently used as a 'test'
input into a system in order to determine a sys-
tem's impulse response. We will deal with this
later, for now it is important to appreciate the
frequency content of these signals.

Pulse Function The Fourier transform of
the pulse function (time-domain) is the sinc
function (frequency domain), and the Fourier
transform of the sinc function (time domain) is
the pulse function (frequency domain)

F{Pa(t)} = sinca(ω)

F{sinca(t)} = Pa(ω)

This result means that the pulse function,
which is �nite in time, has an in�nite range
of frequencies associated with it. Conversely,
the sinc function in the time domain, which ex-
ists for all time −∞ < t < ∞ has only a �nite
range of frequencies. Since all instrumentation
has frequency-dependent behaviour, the impli-
cations of this are profound, as we'll see later.
It is well worth sketching these for a few di�er-
ent values of a.

Figure 12.3: Fourier Transform of the Delta
Function δ(t)

Delta Function The Fourier transform of
the delta-function is a constant, and vice-versa

F{δ(t)} = 1

F{Aδ(t)} = A

F{A} = 2πδ(ω)

Again the implications are profound. The
delta-function (�gure 12.3) contains all frequen-
cies in equal measure. A physical example of a
delta function input to a system is hitting a
mass with a hammer. The hammer transfers
a de�ned amount of energy to the mass in a
very short period of time (ideally applying in�-
nite force for an in�nitely short period of time
such that the total momentum transferred is
1). This means that the hammer blow excites
all frequencies simultaneously. We can use this
to test a system's frequency response. Mechan-
ical engineers do this in practice: strike the ob-
ject to be tested with a hammer and record
the spectrum of frequencies which results. The
peaks in the spectrum are where the object res-
onates.

The physical meaning of F{A} = 2πδ(ω) is also
important. A constant (or DC) input to a sys-
tem is a delta function at ω = 0 in the frequency
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Figure 12.4: Fourier Transform of the Pulse
Function Pa(t) for a = 1 (solid line), a = 2
(dashed line) and a = 1/2 (dotted line) [Note:
horizontal axis should be labelled ω]

domain. This means it is a constant frequency
and that frequency is zero.

Sinusoid

F{A cos(ω0t)} = πA[δ(ω − ω0) + δ(ω + ω0)]

The sinusoid is of course a single frequency
which is represented by the delta-function.
Mathematically it exists at both ±ω0, though
of course only positive frequencies exist in real-
ity. It is useful to sketch the above16.

12.5 Frequency Content of

Pulsed Signals

Figure 12.4 shows the Fourier transform of the
pulse function Pa(t) for various values of a. The
spectrum is the sinc function. Observe that the
lowest frequency at which the function crosses

16Figure 4.26 of Poularikas gives a very nice pictorial
representation of the Fourier representation for many
other common signals. It is well worth browsing this to
get a feel for the behaviour of signals in the frequency
domain.

the time axis is at ω = π/2a. This means that as
a increases (the pulse gets wider) then the spec-
trum of the pulse gets narrower. In the limit as
a→∞ then as we expect from the previous sec-
tion, the frequency function becomes in�nitely
narrow and tends to a delta function.

We can state this as a general rule: very short
pulses (in the time domain) have very wide
spectra, whilst very wide, �at, pulses have
nicely compact spectra. We can formalise this
general rule using fundamental physical consid-
erations deriving from the uncertainty princi-
ple. Ultimately this leads to a dimensionless
quantity called the Time-Bandwidth Prod-
uct. We will cover this in lectures.

Note that the maximum height of the spectrum
is at zero frequency and is given by

F (ω) = 2
sin aω

ω
lim
ω→0

F (ω) = 2a

So as the pulse gets narrower, its spectrum gets
both wider and less tall. This is also physi-
cally intuitive; as the pulse gets shorter in time
the energy it has gets less, therefore in the fre-
quency domain the total energy must also be
conserved by the spectrum becoming wide but
low in amplitude (see also section 12.6 follow-
ing).

As a �nal point, it is worth considering what
would happen if, as the pulse gets narrower,
we let it get taller such that the total area of
the pulse remains 1. Then we would �nd that
as a → 0 then the pulse height → ∞, so we
have a delta function in the time domain. In
the frequency domain we will see that this is a
constant (see �gure 12.3) and from the above
arguments and �gure 12.4 it is clear that this is
the limiting case of the sinc function as a→ 017.

12.6 Parseval's Theorem

To extend what we saw in section 7.9 for Fourier
series to the Fourier integral, Parseval's theo-

17There is a nice worked example of this in Poularikas
(Example 4.19 in section 4.3). It is well worth looking
this up.
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rem gives us the energy relation for the time
and frequency domains

E =

� ∞
−∞
|f(t)|2dt (12.3)

=
1

2π

� ∞
−∞
|F (ω)|2dω

The energy in the time domain is the same as
the energy in the frequency domain, as a conse-
quence of conservation of energy. The quantity

Φ(ω) =
1

2π
|F (ω)|2

is known as the Energy Spectral Density of
the signal such that the energy in a in�nitesimal
band dω is Φ(ω)dω and we can get a measure
of the energy in a range or band of frequencies
as

∆E =

� ω2

ω1

Φ(ω)dω

This is useful when, for example, an instrument
limits our frequency range to ω1 < ω < ω2

and we wish to know how much of the signal's
energy is preserved.

Note that there is a problem with equation 12.3
in that any periodic signal such as a sinusoid ex-
ists for all time and hence has (mathematically)
in�nite energy. Consequently you will often see
the term Power Spectral Density which has
the meaning of signal power per unit frequency.
It is calculated in a rather di�erent way to en-
ergy spectral density, but it can be handled in
a similar way, that is to say if Φ(ω) is a PSD
then we can get the power in the signal by in-
tegrating over the frequency range.

As a further note, the interpretation of energy
and power in signals in this manner is possible
because, if for example f(t) is a voltage and we
assume it acts on a load of 1Ω then

Power =
V 2

R
∝ f(t)2

That is to say both |f(t)|2 and |F (ω)|2 are pro-
portional to power, but we have to be careful
with the units if we are doing numerical calcu-
lations.
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13 Laplace Transform

The integral de�nitions of the Fourier and
Laplace transforms look rather similar at �rst
glance. Both involve an integral of a func-
tion multiplied by an exponential term over
time. However there are some fundamental dif-
ferences between these two transforms, they tell
us di�erent things about physical systems, and
we apply them in rather di�erent ways.

13.1 Integral De�nitions for the

Fourier and Laplace Trans-

forms

Fourier Transform

F{f(t)} = F (ω) =

� ∞
−∞

f(t)e−jωtdt

We have transformed a function of time f(t)
into a function F (ω) in the frequency domain.
Note that the integral is symmetric in time and
involves both positive and negative time.

Laplace Transform

L{f(t)} = F (s) =

� ∞
0

f(t)e−stdt

Here we say that we have transformed a func-
tion of time f(t) into a function F (s) in the s
domain, where s is a complex variable

s = (σ + jω)

The integral is Single-Sided: it only involves
values of time greater than zero.

13.2 Physical interpretation of

the Transforms

In general when we Fourier transform a real
physical observable the resulting function also
represents a physical observable (though the
raw transform might also contain negative fre-
quencies that don't carry useful information).

For example when we Fourier transform a pulse
shape f(t), a function of time, we �nd the
spectrum F (ω) required to support that pulse
shape. You will have met this concept before
in other courses such as optics. In contrast,
the Laplace transform does not generally rep-
resent a useful physical observable, although it
is an e�ective tool for understanding how sys-
tems behave. As an example of this type of
idea in other areas of physics, remember that
a wave function in quantum mechanics might
include a complex term, and that we cannot di-
rectly interpret. However we still use complex
numbers as a useful mathematical device with
which to tackle a wide range of problems in-
volving paired variables (amplitude and phase
for example), and we can recover physical ob-
servables at the end of the problem.

When we analyse a complex device in instru-
mentation, we can �nd ourselves having to deal
with a series of linked di�erential equations
and an arbitrary forcing function. The useful-
ness of the Laplace transform lies in its ability
to change a di�erential equation in the time
domain into an algebraic expression in the s-
domain. After the transformation we �nd the
problem rather easier to solve, and we can then
transform back to the time domain to recover
the real world behaviour of the system. We can
also use the Laplace transform to examine how
a system behaves after the application of an im-
pulse input δ(t) or a step u(t). This allows us
to know whether the system is stable or not, a
problem of importance in instrumentation.

13.3 Fourier Analysis of Systems

The use of the Fourier Transform in systems
analysis requires the decomposition of the forc-
ing function y(t) into its spectrum function
Y (ω). This requires an integral over all time.
This means that in practice we need to know
the value of the forcing function over the entire
past history of the system and for all future
time. If we do know this then, given that we
know the transfer function of the system G(ω),
we can get the spectrum of the system output
X(ω) from the relation
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G(ω) =
X(ω)

Y (ω)

This is the de�ning relation for the Transfer
Function. We can get the system response in
the time domain by inverse transforming

x(t) = F−1{X(ω)}

This approach works perfectly well for systems
where the input signal is a continuous repet-
itive input such as a sinusoid, which for all
practical purposes we can take to be in�nite
in time. This is not just theoretical: in the
lab sessions we will see how we can model the
transfer functions of the electret microphone,
the piezo-sounder, the �lter etc in terms of their
frequency response G(ω). This works because
for practical applications we can assume that
the input signal is in�nite. We know that it
is not, but it has existed for long enough that
any transient or �start-up� response of the sys-
tem has long since ceased to be apparent in the
output of the system. That is to say, the sys-
tem output is the same as it would have been
had the input existed for all time.

13.4 Advantages of the Laplace

Transform

In systems analysis we often want to under-
stand the response of the system to a single
pulse applied at the input at a time usually
taken to be t = 0. This is known as Transient
Analysis and the Fourier Transform has some
limitations for this

1. The Fourier integral does not converge for
some functions such as the unit step y(t) =
u(t)

2. The transfer function can involve integrals
which are di�cult to evaluate

3. The system must be Initially Relaxed

The last of these means that, at time t = 0,
the system has no motion (mechanical system)

or no currents/voltages (electrical system). In
many practical cases this is not a problem
(when we switch on the Elvis prototyping board
we know that our circuit is initially relaxed)
however there are situations where we might
want to understand how our circuit responds to
a step input, and intuitively we know that the
response will be very di�erent if the capacitors
are initially charged, or if currents are already
�owing.

The solution to all these problems is the
Laplace Transform. Because it is a single-
side integral, we only need to evaluate it for
t > 0. This means we don't care about the
input to the system for t < 0. As long as we
know

1. The input for t > 0 and

2. The initial conditions of the system

we can evaluate how the system will evolve for
all time t > 0. This is a physically realistic
situation. For a real system, we know the state
of the system now and we apply an input now ;
we want to observe how the system will evolve.

As a �nal note, the Laplace Transform makes
the mathematics of di�erential equations rather
easy to solve. A di�erential equation in the
time-domain becomes a simple algebraic ex-
pression in the s-domain.

13.5 Properties of the Laplace

Transform

The most important properties of the Laplace
Transform are its linearity and behaviour under
di�erentiation and integration. These proper-
ties are described below.

Linearity Like the Fourier Transform, the
Laplace transform is a linear process

L{K1f1(t) +K2f2(t)} = K1F1(s) +K2F2(s)
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First Time Derivative

L
{
d

dt
f(t)

}
= sF (s)− f(0+)

f(0+) is the initial condition of the system.
It is the value of f(t) as t → 0 from positive
t. Recall that we don't know (or care) about f
for t < 0.

Second Time Derivative

L
{
d2

dt2
f(t)

}
= s2F (s)− sf(0+)− f (1)(0+)

f (1)(0+) is the �rst derivative of f(t) evaluated
as t→ 0+

Integral with Zero Initial Conditions

L
{� t

0

f(ξ)dξ

}
=
F (s)

s

Integral with Initial Conditions

L
{� t

0

f(ξ)dξ

}
=
F (s)

s
+
f (−1)(0+)

s

where

f (−1)(0+) = lim
t→0+

� 0

−∞
f(ξ)dξ

Some further properties of the transform are

Frequency Shifting

L{f(t− λ)u(t− λ)} = e−sλF (s)

The u(t−λ) here is used to ensure f is zero for
all t < λ

Scaling

L
{
f

(
t

a

)}
= aF (as)

For a > 0

13.6 Elementary Laplace Trans-

form Pairs

The forward transform is relatively straight-
forward to derive for many common functions.
The inverse transform, by contrast, is given by

L−1{F (s)} = f(t) =
1

2πj

� σ+j∞

σ−j∞
F (s)estds

and therefore requires integration in the com-
plex plane. Don't try this at home! In order to
perform most inverse and forward transforms,
it is usually su�cient to simplify expressions
and use tables of elementary transform pairs
such as the one given in �gure 13.1.
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Figure 13.1: Elementary Laplace Transform Pairs (from Poularikas and Seeley)
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14 Solving Problems with

the Laplace Transform

Laplace transforms allow us to �nd the time
response of complex systems driven by an ar-
bitrary forcing function, often without having
to directly formulate and solve the di�erential
equation. We use them for solving initial value
problems that start at a time t = 0. This is in
contrast to the Fourier transform that deals in
integrals over both positive and negative time.
This initial value problem however is what we
actually deal with on most experiments. We set
up some apparatus and then throw a switch at
a starting time t = 0. We then want to know
what happens for positive time. To formulate
and solve Laplace transforms for simple sys-
tems we can just look up the relevant time do-
main functions and their s-domain transforms
in a table (see �gure 13.1). For a more complex
system we will probably need to simplify the
Laplace transform representation somewhat be-
fore we can do this. The technique we quite
commonly use to do this involves partial frac-
tions (see section 14.5).

Note that the Laplace transform of the delta
function δ(t) is 1. This means that the time
response of a system subject to an impulse at
its input is given by the inverse Laplace trans-
form of the transfer function. This is one of the
reasons why the delta function is so commonly
used in analysis of systems. Another way of
understanding this is to recall that the Fourier
Transform of a δ(t) function is an in�nite �at
spectrum, so a perfect impulse contains all fre-
quencies in equal amounts. In other words,
when we apply an impulse to a system we stim-
ulate it with all frequencies simultaneously. In
practical applications, such as the Elvis Bode
Analyser, it is ine�cient to stimulate the sys-
tem with all frequencies at once (and indeed
impossible to generate a mathematically true
impulse, so the Bode Analyser sweeps the fre-
quency input in order to build-up the Transfer
Function.

Figure 14.1: Instrument System Consisting of
three Functional Blocks in Series

14.1 Step-Input Response for a

Series System

An instrumentation system is con-
structed from several stages as shown
in �gure 14.1 Determine the response
of the instrument to a unit-step ap-
plied to the input

We begin by determining the individual re-
sponse of the sensor, ampli�er and transducer
to the δ(t) function. This is the Impulse Re-
sponse which can be determined either analyt-
ically or experimentally.

For the instrument in the �gure let us say we
determine the impulse responses in the time-
domain, that is to say we have measured the
input and output transducers' responses to im-
pulse inputs. As mentioned previously, this is
not always the most e�cient method, but it is
sometimes used in reality, especially for certain
mechanical/acoustic transducers. In this case
let us say we measure the impulse responses to
be:

� Sensor g1(t) = e−t

� Output transducer g3(t) = e−2t

Let us further say that we have tested the am-
pli�er and found it to have a voltage gain of 4.
If we assume that it is an ideal ampli�er then
(as a zero-order system) it will have an impulse
response given by:

� Ampli�er g2(t) = 4d(t)

What is the output of the system as a function
of time for an input step y(t) = u(t)? First
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we need to formulate a transfer function for the
complete system. We know the time domain re-
sponses of the individual components and from
these we can �nd their transfer functions. From
our table of Laplace transforms (13.1)

G1(s) =
1

s+ 1
G2(s) = 4

G3(s) =
1

s+ 2

Now we can �nd G(s), the transfer function for
the whole system.

G(s) = G1(s)G2(s)G3(s)

=
4

(s+ 1)(s+ 2)

The input to the system is a unit step function
y(t) = u(t), and the Laplace transform of this
is simply 1/s. To �nd the time response of the
system we recall that X(s) = G(s)Y (s) where
X(s) and Y (s) are the Laplace transforms of
the input and output of the system, and G(s)
the transfer function.

x(t) = L−1{X(s)}
= L−1{G(s)Y (s)}

= L−1
{

4

s(s+ 1)(s+ 2)

}

Our task now is to evaluate the inverse Laplace
transform of this function, and we do this for
our example using partial fractions. We write
our s-domain function as a sum of partial frac-
tions (see section 14.5)

X(s) =
4

s(s+ 1)(s+ 2)
=
A0

s
+

A1

s+ 1
+

A2

s+ 2

This is an identity and valid for all values of s
therefore we can choose values of s which make

some of the constants disappear. Multiplying
through by s and evaluating for s = 0 gives

∣∣∣∣ 4

(s+ 1)(s+ 2)
= A0 +

A1s

s+ 1
+

A2s

s+ 2

∣∣∣∣
s=0

A0 = 2

Similarly for A1 we can multiply through by
s+ 1 and evaluating for s = −1

∣∣∣∣ 4

s(s+ 2)
=
A0(s+ 1)

s
+A1 +

A2(s+ 1)

s+ 2

∣∣∣∣
s=−1

A1 = −4

And for A2 we can multiply through by s + 2
and evaluating for s = −2

A2 = 2

Putting these constants back into our identity
for X(s)

X(s) =
2

s
− 4

s+ 1
+

2

s+ 2

This is now in a form that we can simply write
down a time response for, with reference to our
Laplace transform tables. If we do this for the
individual components of X(s) we �nd

x(t) = 2− 4e−t + 2e−2t

This function is plotted in �gure 14.2 for t =
0 . . . 8 seconds. Note that it shows the sort
of time behaviour we expect from �rst order
systems subject to a step input (or a heavily
damped second order system). The response
to the step is an initial rise, which then slows
down, and tends to some steady state value for
large t.
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Figure 14.2: System Response to a step-input
y(t) = u(t)

14.2 Solving for Impulse Re-

sponse with a Known Trans-

fer Function

Find the time-domain
impulse-response of a system with a

transfer function

G(s) =
s+ 3

(s+ 2)2

To �nd the time-domain response of the system
we note g(t) = L−1{G(s)} = L−1{X(s)} since
y(t) = δ(t), Y (s) = 1 and therefore

g(t) = L−1
{

s+ 3

(s+ 2)2

}
As before we need a partial fraction expression
to simplify the inverse transform. For denomi-
nators of order >1 we must write the PF as

s+ 3

(s+ 2)2
=

A2

(s+ 2)2
+

A1

s+ 2

To �nd A2 we multiply G(s) by (s+2)2 and set
s = −2 to get A2 = 1

We now need to �nd A1, however there is a
problem with continuing the method. To �nd
this coe�cient we cannot use s = −2 again as

Figure 14.3: Switched LCR Circuit

we have already used this to �nd A2. Instead
we can di�erentiate G(s)(s + 2)2 (see section
14.5)

d

ds
G(s)(s+2)2 =

d

ds
(s+3) =

d

ds
(A2+A1(s+2))

1 = A1

Therefore

G(s) =
1

(s+ 2)2
+

1

s+ 2

Which can be easily inverse transformed into

g(t) = te−2t + e−2t

14.3 Switched Electrical Circuit

The two previous examples were a little di-
vorced from reality. We'll now use the Laplace
transform to analyse a simple electrical circuit.
One of the major uses of the Laplace trans-
form in electrical engineering is for initial value
problems where we throw a switch, or turn on
a circuit. What we then want to know is the
behaviour of the circuit for all times after we
throw the switch.

Figure 14.3 shows a simple LCR series circuit
with a voltage source V and a switch. If the
voltage source was a sine wave generator, and
the switch had been closed for a long time then
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we could use our usual expressions for the com-
plex impedance (essentially a Fourier approach)
to �nd the current and voltage for various com-
ponents in the circuit. However here the ap-
plied voltage is a constant V and is applied once
at time t = 0. AC circuit analysis is not appro-
priate for this sort of transient input problem
where we want to know �what happens imme-
diately after we throw the switch?� We can use
the Laplace transform to answer this.

For a DC voltage source V = 300 V,
inductor L = 2 H, capacitor C =
0.02 F and resistor R = 16 Ω �nd an
expression for the charge on the ca-
pacitor q(t) and the current I(t) in
the circuit for all times t > 0 after
the switch is closed. Assume that the
circuit is initially relaxed.

We begin by determining the di�erential equa-
tion which governs the circuit. We can write
the voltage across each of the components as

� Voltage across the inductor = LdIdt

� Voltage across the resistor = IR

� Voltage across the capacitor = q/C

Using Kirchho�'s voltage law to sum the volt-
ages around the series circuit we can write (for
time t > 0, i.e. after the switch is closed)

L
dI

dt
+ IR+

q

C
= V (14.1)

Since I = dq/dt (we know that the instantaneous
current is the same everywhere in the circuit,
due to conservation of charge, or Kirchho�'s
current law). Also as V = 0 for all time t < 0
we can write this as

V u(t) = L
d2q

dt2
+R

dq

dt
+
q

C
(14.2)

The di�erential equation is second order in time
therefore we may expect that the system may
be capable of oscillation as well as tending to
some steady-state condition at some time t

much after we close the switch. To solve the
DE, we take the Laplace Transform

V

s
= L(s2Q(s)− sq(0+)− dq

dt
(0+))

+ R(sQ(s)− q(0+)) +
Q(s)

C
(14.3)

Here we see how the initial conditions of the
system are automatically taken care of by the
Laplace transform. Since the circuit is initially
relaxed, we start with q = 0 and q̇ = q̈ = 0, so
we can further simplify the algebraic expression

300

s
= 2s2Q(s) + 16sQ(s) + 50Q(s)

Q(s) =
150

s(s2 + 8s+ 25)

Again using partial fractions, here we must
write

150

s(s2 + 8s+ 25)
=
A

s
+

Bs+ C

s2 + 8s+ 25

Multiplying by s and setting s = 0 yields A = 6.
Multiplying by s(s2 + 8s+ 25), taking d/ds and
setting s = 0 yields B = −6. Again taking d/ds
and setting s = 0 yields C = −48.

Q(s) =
150

s(s2 + 8s+ 25)
=

6

s
− 6s+ 48

s2 + 8s+ 25

This requires further simpli�cation before we
can used the standard transforms

Q(s) =
6

s
− 6(s+ 4) + 24

(s+ 4)2 + 9

=
6

s
− 6(s+ 4)

(s+ 4)2 + 9
− 24

(s+ 4)2 + 9

We can now use entries 2, 11 and 12 in �gure
13.1
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Figure 14.4: Time Response of the Switched
LCR Circuit

q(t) = 6− 6e−4t cos(3t)− 8e−4t sin(3t)

Now we have q(t) we can di�erentiate to �nd
the current

I(t) =
dq

dt
= 50e−4t sin(3t)

This is illustrated in �gure 14.4. Note that
this is the kind of response we expect from
a damped harmonic oscillator. The result is
physically meaningful: at the instant at which
the switch is closed, the rate of change of volt-
age across the capacitor is very large so a large
current will �ow, with the rate of change of cur-
rent limited by the inductor. Electrical energy
is stored in the electric �eld across the capacitor
and in the magnetic �eld of the inductor. The
two exchange energy in an oscillatory fashion
like a mechanical oscillator exchanging kinetic
and potential energy. The sin 3t term re�ects
this. As the system evolves, electrical energy
is converted to heat energy in the resistor, so
the amplitude of the response decays (the ex-
ponential term). For large t the applied voltage
(the forcing function V ) is a constant and the
voltage across the capacitor tends to a constant
hence the impedance of the capacitor tends to
∞ and the current tends to zero.

In this example we started from the under-
standing that the system was �initially relaxed�.

This is usually the starting point for most sys-
tems. When we switch-on the Elvis prototyp-
ing board, we assume that the voltages and cur-
rents are zero, and this is usually right, however
consider in this case that someone has snuck
into the lab overnight and charged the capac-
itor up to 100V. The charge on the capacitor
will stay put until the switch is closed, and
we can imagine that the I(t) response will be
very di�erent! The de�ning di�erential equa-
tion for the circuit is still valid (see equations
14.1 and 14.2) and we can see that the transfor-
mation into the s-domain (equation 14.3) auto-
matically includes an initial value for q.

14.4 Other Applications

We've seen here how Laplace methods allow
complex systems to be solved by transform-
ing di�erential equations in the time-domain
into algebraic expressions in the s-domain. The
fact that the Laplace transform is single-sided
and takes into account initial conditions means
that it is very well suited for solving transient
analysis problems in mechanical and electri-
cal engineering. These methods are applica-
ble across the physical and engineering disci-
plines. As mentioned in lectures, biological sys-
tems (including complex feedback loops) can be
modelled. Other applications are in economics,
where the parameter to be determined could be
price and the constants relate to supply and de-
mand. In general, any continuous-time system
represented by ordinary di�erential equations
can be studied, especially where we want to set
the system up in some starting con�guration
and observe how it evolves with time.

As a �nal note, you should be aware that
there is an equivalent to the Laplace trans-
form for discrete (quantised) signals called the
Z-transform. This is of central importance in
the �eld of digital signal processing, though we
won't be able to cover this in the course.
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14.5 Partial Fractions

Consider

2

5
− 3

4
+

1

2
=

8− 15 + 10

20

Where 20 is the lowest common multiple. Par-
tial Fraction Decomposition is the reverse of
this process. In general, any rational function

P (s)

Q(s)

can be re-written using partial fractions. First,
it is essential to check that the degree of the
numerator is less than the degree of the denom-
inator. If not, it is necessary to �rst divide-out
by long division. This is tedious so we will avoid
it in this course, and in general the sort of real-
world problems we will encounter naturally lead
a higher degree of s in the denominator. Pro-
ceed as follows:

For each factor of Q(s) in the form (as + b)m

introduce terms

A1

as+ b
+

A2

(as+ b)2
+ · · · Am

(as+ b)m

For factors of the form (cs2+ds+e)n introduce
terms

C1s+D1

cs2 + ds+ e
+

C2s+D2

(cs2 + ds+ e)2
+· · · Cns+Dn

(cs2 + ds+ e)n

There are various methods to solve for the con-
stants but remember that

P (s)

Q(s)
=

A1

as+ b
+

C1s+D1

cs2 + ds+ e
+ · · ·

is an identity valid for all values of s. We can re-
arrange and substitute values of s which cause
some unknowns to disappear. For example in

X(s) =
s+ 3

(s+ 2)2
=

A1

s+ 2
+

A2

(s+ 2)2

we can multiply X(s) by (s + 2)2and set s =
−2 to get A2. To get A1 we can di�erentiate
X(s)(s+2)2 with respect to s and then use s =
−2 a second time. Alternatively we can gather
terms in powers of s to get a set of simultaneous
equations

X(s)(s+ 2)2 = s+ 3 = A1(s+ 2) +A2

Gather terms:

0 = s(A1 − 1) + (A2 + 2A1 − 3)

From which

A1 − 1 = 0

A2 + 2A1 − 3 = 0

Whichever method is best depends on the form
and complexity of the functions.
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15 Stability in LTI Systems

We brie�y looked at stability in the context of
feedback ampli�ers. We saw how a negative
feedback system can go into unstable positive
feedback when the phase change at the output
tends to 180◦. In an ampli�er this is very bad,
since the feedback then tends to increase the
gain rather than decrease it. The output tends
to oscillate, with the ampli�er output switch-
ing between ±Vss (the supply voltage) at the
oscillation frequency.

Fortunately, if we have a mathematical model
of our system then we can test for stability
by exciting all frequencies at the input using
a delta function. We �nd three cases

1. Stable: The output responds, comes to rest
and stays where it is. In this case, the
system responds to the impulse-input by
moving to a new equilibrium state. This
is typical of many �rst-order mechanical
or thermal systems - the impulse puts a
certain amount of energy into the system
which moves to a new (stable) equilibrium.

2. Asymptotically Stable: The output re-
turns to the original equilibrium state. An
ampli�er would do this.

3. Unstable: The output grows (or shows
growing oscillation) until it reaches some
physical limit

15.1 Poles and Zeros of the

Transfer Function

Writing the transfer function as

G(s) =
P (s)

Q(s)

� Values of s such that P (s) = 0 are Zeros
i.e. G(s)→ 0 as P (s)→ 0

� Values of s such that Q(s) = 0 are Poles
i.e. G(s)→∞ as Q(s)→ 0

In real (physical) systems the transfer function
G(s) is always a ratio of 2 polynomials with real
coe�cients. This results in the poles and zeros
being either

� Real or

� Complex-conjugate pairs

We can check for stability by seeing where these
values of s lie on the complex plane. Generally

� Roots in the σ < 0 side of the plane are
stable

� Roots in the σ > 0 side of the plane are
un-stable

15.2 Complex Roots

Sometimes roots will be complex, and as stated
before in real physical systems these always ap-
pear as complex conjugate pairs Assuming we
can expand the Transfer Function as

G(s) =

n∑
k=1

Ak
s− sk

Then the the complex-conjugate roots will be
of the form

sk = σk ± jωk

So we get a set of solutions of the form

gk(t) = Ake
skt +A∗ke

s∗kt

Since Ak = a + jb and sk = σk + jωk we can
simplify to

gk(t) = 2
√
a2 + b2eσkt cos(ωkt) + βk

βk = tan−1
b

a

These results are illustrated graphically in �g-
ure 15.1. In the top panel, a real negative root
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Figure 15.1: Graphical Illustration of Roots in
the Complex Plane

exists and the system is asymptotically stable.
In the second panel the system is unstable as
the output grows without limit. In the third
panel complex-conjugate roots exist to the left
of the σ = 0 axis. The result is damped oscil-
lation and the system is asymptotically stable.
With complex roots on the RHS of the axis we
have growing oscillation and the system is un-
stable. The last two panels show some special
cases. With purely imaginary roots we have
sustained oscillation, which is nonetheless sta-
ble. If the root is at s = 0 then the response is
a constant, which is stable.
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16 Bandwidth

We've seen in section 12 how there is an in-
timate relationship between the duration of a
pulse in the time domain and its range of fre-
quencies in the Fourier transform. The latter
is generally known as the Bandwidth of the
pulse. More generally, bandwidth is any range
of frequencies and is consequently measured
in Hz or rad/s. Bandwidth is the frequency-
domain equivalent of 'duration' in the time do-
main. We have talked about continuous func-
tions such as a voltage V (t) having an instan-
taneous value at time t. While mathematically
correct we recognise that any real measurement
of V takes a �nite time τ and that, typically,
our measuring instrument might perform an av-
eraging function on the signal, so we can write

Vτ (t) =
1

τ

� t′=t+τ

t′=t

V (t′)dt′

Top-end equipment can sample signals on a
timescale of ns, but there is always some �-
nite measurement time. Consequently there is
always a �nite range of frequencies associated
with any measurement. An average over time
in the time-domain is equivalent to an average
over frequencies in the frequency domain.

16.1 Pulse Width and Bandwidth

It is tempting to describe the width of a pulse
in the time domain as its non-zero time range,
however many signals we can describe math-
ematically such as the Gaussian-pulse would
technically have in�nite duration, even if this is
not physical. An easier way to get a 'measure'
of the pulse is to take the Full-Width at Half
Maximum (FWHM), that is the width of the
pulse measured at half its maximum height18.

18See also See http://hyperphysics.phy-
astr.gsu.edu/HBASE/math/gaufcn2.html

Figure 16.1: Full-Width at Half-Maximum for
a Gaussian-shaped pulse

A point to note: in electronics, we measure
the amplitude of parameters such as voltage
and current. Therefore typically we measure
the FWHM of the pulse amplitude. The
Frequency-domain equivalent would be the
FWHM of the amplitude spectrum (the Fourier
transform). However in optics the amplitude of
the electric �eld is not a physical observable,
so by convention we take the FWHM of the
pulse intensity or power, that is the square of
the amplitude. Therefore in the frequency do-
main we de�ne the bandwidth of the pulse as
the FWHM of the power spectrum (the magni-
tude of the amplitude-transform squared).

16.2 Bandwidth for a Filter

If we are using a Bode plot (see section 6.2) to
characterise a �lter's frequency response then
frequently we will summarise this numerically
as the bandwidth of the �lter. Here, this is
the range of frequencies where the �lter gain is
within 3dB of the maximum value. For a low-
pass �lter (section 6.4) this means the band-
width is the range of frequencies from 0 to ωc.
If we consider the RLC circuit (section 11.5.3)
to be a Bandpass Filter then the bandwidth
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is the range of frequencies within 3dB of the
peak. Note that -3dB is a factor of 1/

√
2 in am-

plitude. E�ectively then, ωc for a �lter is the
frequency at which the output power is half the
input power (at the same frequency).

16.3 Time-Bandwidth Product

A central theme in the instrumentation
course, communications, optics and many other
branches of physics is that a signal that has a
�nite duration in time must therefore have asso-
ciated with it some �nite spread of frequencies.
For any pulse shape we choose, and with a given
duration (FWHM), we can calculate the spec-
trum by taking the Fourier transform and thus
get the Spectral Width (FWHM). There-
fore, for any given pulse-shape, the Time-
Bandwidth Product is a constant that we
can calculate.

It is important to note that the de�nition of
∆ν and ∆t we are using here is the FWHM
de�nition. If we take a Gaussian shaped pulse
(section 2.3.5) then mathematically it has in�-
nite duration in the time-domain and also also
an in�nite range of frequencies. However if we
use the FWHM de�nition then we can calculate
the Time-Bandwidth product to be �nite (and
about 0.44, see example)

Example: Ultra-Fast Laser Pulse The
duration of a laser-pulse is by convention taken
to be the FWHM of the pulse's optical inten-
sity (amplitude squared, f(t)2), and its band-
width is then the FWHM of the power spec-
trum (amplitude spectrum squared, |F (ω)|2).
Using these de�nitions of duration and band-
width, we can calculate the time-bandwidth
product for any given pulse shape. For the
Gaussian, this turns out to be about 0.44 (the
proof of this is left as a problem sheet question).
If we wish to produce a Gaussian-shaped pulse
of duration 10 fs, we discover that we require a
bandwidth of 44 THz!

16.4 Application to Very Short

Pulses

An alternative way of thinking about this is
from the point-of-view of an instrument with
limited bandwidth (as all instruments have,
fundamentally). This means that the instru-
ment can only reproduce signals over a �nite
range of frequencies, and ultimately this limits
how short the pulse can be in the time domain.
This is a practical consideration of special im-
portance in the �eld of ultra-fast laser physics.

The time-bandwidth product is dependent on
the shape of the pulse. Physically, realisable
pulses with values as low as 0.3 are possible,
and some specialist lasers are able to generate
these pulses with durations close to this limit.
This is not just of academic interest (see box
below)

Application: Optical Fibre Communica-
tions To get get the maximum data through-
put on a optical �bre link it is necessary that
the pulses (representing the data) are both
short and very close together. Typically a lim-
iting factor is chromatic dispersion (frequency-
dependent propagation speed). This results in
the pulse shape getting distorted as it travels
down the �bre, as di�erent frequency compo-
nents travel at di�erent speeds. Ultimately, the
problem is that the pulses merge together in
such a way that the receiver can not decode the
original train of pulses. For a given pulse dura-
tion, transform-limited pulses (see next section)
are those with the minimum possible spectral
width. In optical communications, a transmit-
ter emitting close to transform-limited pulses
minimises the e�ect of chromatic dispersion,
thus maximising the possible transmission dis-
tance.

Real pulses are of course only approximations
to the mathematical ideal. The 'quality' of a
very-short pulse is measured by how close we
can get to the ideal time-bandwidth product.
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16.5 Fourier Transform Limit

The Fourier Transform Limit gives us a use-
ful tool that we can apply in the lab to test
the validity of measurements such as the du-
ration of an ultra-short laser pulse. We say
that a pulse or signal is transform limited if
it contains (in the frequency domain) exactly
the minimum range of frequencies required to
support the pulse shape. Pulses with more fre-
quencies than are required by the transform
limit are physically possible, but those with
less are not. One important result that follows
from the transform limit is that that any sig-
nal that contains a sudden change, (delta func-
tions, step functions, square waves and so forth)
has associated with it a large spread of frequen-
cies. Real instruments cannot deal with in�-
nite frequency ranges; they always have some �-
nite bandwidth. This means that while perfect
pulses, steps, square-waves and so forth provide
us with useful mathematical tools for analysing
instruments, we never actually get to see them
in real life.

Physics imposes a fundamental limit on how
small the time-bandwidth product can be. We
can show that this in both a purely classical for-
mulation and (rather pleasingly) by using quan-
tum mechanics as well. If we apply a combina-
tion of a Fourier and an inverse Fourier trans-
form to an arbitrary function of time f(t) we
�nd that there is a �xed relationship between
the temporal width ∆t and the bandwidth ∆ν
such that the time bandwidth product ∆ν∆t
must obey the inequality

∆ν∆t ≥ 1

4π

If we look to quantum mechanics and the en-
ergy/time uncertainty principle

∆E∆t ≥ ~
2

we see an identical result. Dividing the un-
certainty principle result through by h we ob-
tain the same transform limit which we can
obtain classically (through the Fourier trans-
form). The time bandwidth product of a real

pulse is almost without exception > 1/4π. By
Fourier transforming real world pulse shapes
such as the Gaussian Ae−a

2t2 and calculating
∆ν∆t we can obtain numerical values for the
transform limit in such cases19.

19There is a good amount of useful informa-
tion about ultra-fast laser physics at http://www.rp-
photonics.com/encyclopedia.html. Start by by using
the site search for �Transform Limit�
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Figure 17.1: Sinusoid (lower trace) and its Rec-
ti�ed Version (upper trace). In both cases the
zero-level is shown by the dotted line (the rec-
ti�ed trace has been shifted up for clarity)

17 Signal Recti�cation

Sometimes, we need to generate a Recti�ed
version of a signal, that is to say a signal where
the current only ever �ows in one direction.
Typically, we'll look at the voltage of the recti-
�ed signal and we �nd that any of the +ve going
parts of the waveform are preserved and any -
ve going parts of the signal have been re�ected
so they are now +ve. Figure 17.1 shows this
for a sinusoid (lower trace), with the recti�ed
version being consistently above the zero-level
(mathematically this is just | sin(ωt)|). Recti-
�ed signals are useful in many places and we'll
see one particularly clever application in the
next section, but here we'll concentrate on the
basic implementation.

17.1 Diode Recti�er

Since the diode only conducts current in one
direction it is ideally suited for the job. We can
make a simple Full-Wave Recti�er (which
produces an output as per �gure 17.1) using

a simple circuit of 4 diodes20.

Example: Power Supply We might
want to build a power-supply to charge-up
a battery-operated device. This means con-
verting 240 V AC mains to 5 V DC. This is
done in three steps. Firstly, a transformer
steps the voltage down from 240 V AC to
5 V AC. Secondly, a recti�er gives us a sig-
nal per �gure 17.1. Thirdly the output is
Smoothed using a capacitor. The output
is more-or-less a constant voltage, with some
Ripplea. Here, we're using the capacitor as
a charge-storage device.

aSee Horowitz and Hill section 1.27

17.2 Synchronous Recti�er

There are problems with diode recti�ers, for ex-
ample we get a voltage drop across each diode
of about 0.6 V, which means that if we are try-
ing to rectify small AC voltages then we can
get a signi�cant reduction in the output ampli-
tude21. As previously mentioned, op-amps pro-
vide a simple, cheap and e�ective alternative to
many traditional techniques, and recti�cation
is no exception. The principle can be seen by
looking again at �gure 17.1; the input waveform
is �ne when it is +ve but must be inverted when
it swings -ve. That is to say, we need to run it
through an ampli�er with Gain=1 for +ve volt-
ages and Gain=-1 for -ve voltages. Another
way of looking at this is shown in �gure 17.2;
here we see that the input signal (top trace)
needs to be multiplied by a square wave at the
same frequency (middle trace) to achieve the
recti�ed signal (bottom trace). It is tempting
to try and design a circuit to directly multiply
two signals together, but this turns out to be
quite hard. However we've seen that op-amps
can be used to multiply by a constant Gain,
so the technique here is to use the square wave
to switch the Gain between ±1. A schematic

20See Horowitz and Hill section 1.26
21Figure 17.1 shows idealised recti�cation, however if

you look in detail at Horowitz and Hill �gure 1.71 you
will see that they have taken the small voltage drop into
account.

77



Figure 17.2: Sinusoid Multiplied by a Square
Wave of the same Frequency (and with no phase
di�erence)

arrangement for achieving this is given in �g-
ure 17.3. The circuit is covered in lectures, and
you can also see this in Horowitz and Hill �gure
15.3722.

In �gure 17.3 the square wave is called the refer-
ence signal (we'll see why later) and it is used to
control a switch, which switches the signal from
inverted to non-inverted and back again each
time the reference signal changes sign. We'd

22Though we don't need the output RC �lter yet, this
will come later when we look at phase detectors

Figure 17.3: Schematic of the Synchronous
Recti�er

describe this as an edge-triggered switch, since
the transition happens on each rising or falling-
edge of the reference signal. This kind of ar-
rangement is quite common, for example a me-
chanical relay would be �ne, though these days
there are ready-made electronic switches which
will do the job much faster. We'll take it as
read that the switch is a ready-made compo-
nent and not be concerned any further with it.
The main point to take from this is that if the
reference and input are of the same frequency
(and zero phase di�erence) then the output is a
recti�ed version of the input.

This requirement that the two inputs be at the
same frequency seems quite di�cult. However
in many real-life applications such as switched-
mode power converters23 where the two signals
are derived from a common source so you know
they are going to be the same.

The fact that this sort of recti�er takes two in-
puts leads to an application called the Phase
Detector which is a key technique in instru-
mentation and �nds application in more-or-less
every �eld of science.

23You don't need to know any details about this, it's
just an example
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18 Phase Detector

To quote Horowitz and Hill:

�This is a method of considerable subtlety�

Which is their way of saying that while it looks
simple it is actually quite complicated to fully
understand. Because of its importance, though,
we will go through the topic in some detail.

The Phase Detector simply consists of a syn-
chronous recti�er with a low-pass �lter at the
output. The circuit for this is given in lectures.
The importance of the phase detector will be
seen when we consider what happens if the two
input signals are either out-of-phase, di�erent
frequencies (or-both). First, we need to take a
look at the function of the low-pass �lter

18.1 Averaging Circuit

Here we use the low-pass �lter to perform an av-
erage of the recti�ed signal. We have seen how,
for repetitive input signals of high frequency
(ω � 1/RC) the low-pass �lter approximates to
an integrator according to

Vout =
1

RC

�
Vindt

Now this breaks down for our recti�ed signal
since it is always positive and hence the integral
tends to in�nity, which is clearly not physical
since our output amplitude can never be larger
than the input (we have no ampli�er here!).
However, intuitively we can see that integrat-
ing a signal over some time τ then dividing the
result by τ yields the average. If we integrate
over one time constant (τ = RC) then

Vout =
1

τ

� τ

0

Vindt = 〈Vin〉

This makes sense from a physical point of
view24: when the input voltage to the �lter is

24It may be more intuitive to think about this in
the frequency domain: consider the Fourier components
of the input signal and recall that the �lter only lets

greater than the voltage on the capacitor then
the capacitor is charging up; when the input
is less then the capacitor is discharging. This
charge/discharge cycle will be seen as ripple on
the capacitor voltage, but for high frequency
inputs (ω � 1/RC) the ripple is very small and
the capacitor voltage will approximate the av-
erage input, i.e. Vout u 〈Vin〉.

Returning now to the phase detector, we can
treat this as a system with two adjustable input
variables:

1. The phase di�erence between the two in-
puts

2. The (relative) frequencies of the two inputs

We'll now proceed to investigate the behaviour
of these in turn

18.2 Behaviour with a Phase Dif-

ference

This is best understood graphically, as pre-
sented in �gure 18.1. Note that in all the cases
presented here, the two input have exactly the
same frequency. In the �rst panel, there is zero
phase di�erence. Note that in all these �gures,
the waveforms from top to bottom are: input
signal, reference signal, recti�ed signal and av-
eraged (output) signal25. For zero phase di�er-
ence we get a constant positive output which
turns out to be 2/π times the amplitude of the
input signal. Inverting the input signal (φ = π)
gives us a negative output of the same size. For

through the very low frequency components. Note that
the recti�ed signal has a DC component (referring back
to 7 we see that this means there is a non-zero value
of A0) which represents the long-term average of the
signal.

25For information, these �gures have been generated
using Maple. The input signal is de�ned as Vin =
sin(t+ φ), the reference signal is de�ned as a piecewise
continuous function representing a square wave and the
recti�ed signal is Vrect = Vin×VRef The output of the
�lter is computed by integrating Vrect over 10 cycles of
the input signal. The number 10 is chosen more or less
arbitrarily here, however in a real system this would de-
�ne the required value of RC to be used in our circuit
since the integration time equals RC.
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Figure 18.1: Phase Detector behaviour with 4 di�erent values of phase di�erence φ between input
and reference signal. Note that in all these �gures, the waveforms from top to bottom are: input
signal, reference signal, recti�ed signal and averaged (output) signal.

the φ = π/2 case we get a zero output and for
the �in-between� case of φ = π/4 we get an in-
between output. Clearly then the phase detec-
tor (sometimes called the Phase Sensitive De-
tector) is highly sensitive to di�erences in phase
between the two signals. Note visually how the
averaging circuit gives the appropriate output.

For an input signal Vin = A sin(ωt + φ) the
output of the phase detector is

Vout =
2A

π
cosφ (18.1)

This can be checked by performing the recti�-
cation/integration directly as

Vout =

� π/ω

0

Vindt−
� 2π/ω

π/ω

Vindt

In summary then, when the two inputs have
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the same frequency, the phase detector gives a
voltage output which is a function of the phase
di�erence between the two. This in itself is very
important and has applications which we won't
go into here, because the most useful function
of the phase detector becomes apparent when
we consider how the circuit behaves as we vary
the relative frequency of the two inputs.

18.3 Behaviour with a Frequency

Di�erence

In this situation we de�ne two di�erent fre-
quencies ωinput for the input signal and ωref
for the reference. This is illustrated with the
four plots in �gure 18.2. In the �rst panel we
see the case ωinput = ωref and φ = 0 (which is
the same as the �rst panel in �gure 18.1). For
ωinput = 2ωref we can clearly see that the out-
put will always be zero, whatever the phase dif-
ference between the two signals. If we choose an
irrational ratio such as ωinput = 1.3ωref (there
is no �xed phase di�erence) then as long as we
average over a su�ciently large number of cy-
cles we always get zero output26. We need to
reduce the ratio to ωinput = 1.01ωref before
we start to see any kind of output from the
detector. It looks like a constant output, but
if we plot the signal over a longer time period
(bottom-right panel) we can see that it is sinu-
soidally varying. In fact the output varies as
cos(t∆ω) where ∆ω is the di�erence between
the two input signals, as long as ∆ω is a low
enough frequency to pass through the �lter.

We can understand this behaviour by looking
at the frequency content of the signals. Let's
say the reference frequency is ω then the input
frequency is ω + ∆ω. We can write the two
signals as

Vin = A sin(ω + ∆ω)t

Vref =
4

π

[
sinωt+

sin 3ωt

3
+

sin 5ωt

5
· · ·
]

26Again here, these plots have been generated by in-
tegrating over 10 cycles.

Here we use a Fourier expansion to represent
the square wave. We just need the �rst three
terms of the Fourier series to understand the
behaviour. Multiplying the two together we
�nd the recti�ed signal (i.e. before the �lter)
is given by27

Vrect =
4A

π
[] (18.2)

Now we know that ω � ωc so frequencies ω
and above will not pass through the �lter. For
∆ω � ωc the �rst term in equation18.2 will
pass through the �lter un-attenuated28. We can
de�ne the output as follows29

Vout =

{
2A
π cos(t∆ω) ∆ω � ωc

0 ∆ω � ωc
(18.3)

18.4 Lock-In Ampli�er

One of the most important implications of
equation 18.3 is that the di�erence between the
two input frequencies has to be very small if we
are to get any output from the phase detec-
tor. We can set the value of ωc by choosing
the values of R and C in the output �lter, and
therefore we can make the range of frequencies
that the circuit responds to very narrow indeed
(values as low as 1 Hz are possible). Since the
reference frequency may be kHz or MHz, this
means the circuit is very good at �picking-out�
frequency components of the input signal with
very high frequency resolution. Generally our
input signal will consist of many frequencies
(and noise) so the phase detector is good for
asking questions such as �What is the ampli-
tude of the input signal at 1 kHz measured in a
bandwidth of 1 Hz? �.

A typical commercially-available implementa-
tion of the phase detector is known as the

27Note that we need to make use of the trig identity
sinA sinB = 1

2
[cos(A − B) − cos(A + B)] to get this

result. This tells us that the product of two sinusoids
is (co-)sinusoids at the di�erence and sum frequencies.

28For low frequencies the �lter is not an integrator!
29Note that we can use a similar argument to demon-

strate equation 18.1 too
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Figure 18.2: Phase Detector behaviour where the input signal has a di�erent frequency to the
reference frequency. Note that in all these �gures, the waveforms from top to bottom are: input
signal, reference signal, recti�ed signal and averaged (output) signal.

Lock-In Ampli�er and in its simplest im-
plementation this is a box with an input, two
knobs and an output. The �rst knob is used to
set the reference frequency (an internally gen-
erated square wave) and the second knob al-
lows the phase between the two signals to be
adjusted. The procedure to be used goes as
follows: the input is connected to the signal
we wish to study and the output Vout is usually
sent to an oscilloscope. The reference frequency

is set to 1 kHz and if there is any component of
the input signal at this frequency then we will
see an output on the 'scope. According to equa-
tion 18.3 we may �nd that the output varies a
little so we �ne-adjust the frequency knob to
get a �x (or �lock�) with a steady output. At
this point ∆ω = 0 so now equation 18.1 comes
into play. We now twiddle the phase knob to
get a maximum output, and from this we can
determine the value of the amplitude A at the
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given frequency.

Practical Lock-In Ampli�ers also have compli-
cated extra features but the only one we need
to be concerned with is the ability to take the
reference frequency as an external input so we
can generate this signal ourselves30.

18.5 Signal Analyser

The lock-in ampli�er gives us the capability to
measure the amplitude of a signal at a speci�c
frequency and with a very narrow bandwidth.
This is the basic requirement of a Signal Anal-
yser, a device which gives as output the am-
plitude of a signal as a function of frequency.
We can use a signal generator to sweep the ref-
erence frequency over the required range and
we can measure the amplitude at the output as
a function of frequency. This will give us the
amplitude spectrum of the signal. Note that in
practice, signal analysers such as the one you
have used with the ELVIS equipment, use a
di�erent technique, however it is important to
understand the concept, and in fact some high-
end spectrum analysers do use a variation on
the method described above.

18.6 Extracting Signal From

Noise

One of the most powerful uses of the phase-
detector/lock-in ampli�er technique is when
we have a signal we wish to measure at a
known frequency, but heavily contaminated
with noise. For example we may have a sen-
sor which we know produces a signal at 1 kHz
but with a very small amplitude, say tens of
µV . We may �nd that our signal has noise
of some volts RMS. The signal to noise ra-
tio is then some -100dB. The situation seems
hopeless: were we to plot the data in the time-
domain we would just see the noise; the signal
at 1 kHz would be buried. However, recalling

30One practical consequence is that we can measure
the ref frequency directly on a 'scope rather than having
to rely on a value read from the dial on the front of the
box

that noise is usually broad-band we understand
that we can reduce the amount of noise in a
measurement by reducing the bandwidth of the
measurement. For example for thermally gen-
erated noise we found that

Vnoise,RMS ∝
√
B

The lock-in ampli�er can still measure the sig-
nal because

1. We expect a well de�ned signal fre-
quency which is repetitive and can be syn-
chronously detected (in comparison with
the noise which is random and ultimately
averages to zero)

2. The lock-in technique is highly selective in
frequency, therefore it reduces the band-
width of the measurement.

In practice a SNR of -100 dB or worse is man-
ageable with this technique.

Example: Measurement Bandwidth
of an Oscilloscope Imagine we have a
measurement where the observed noise is
106×the signal. If the noise is principally
thermal in origin then the noise per unit
Hz is a constant so we can reduce the total
noise measured by reducing the bandwidth
of the measurement. Measuring with an
oscilloscope (typical bandwidth 100 MHz)
we would be unable to see the signal. How-
ever, if we �rst �lter the signal with a
band-pass �lter of width 100 Hz then the
SNR improves by a factor of a million.
Note that the part of the signal we are in-
terested in must of course be within the
�lter range.

In summary, we should think of this as a
frequency-domain technique. If the signal of in-
terest has a de�nite and �xed frequency (i.e. it
is Narrow-Band), and if the noise is Broad-
Band, (i.e. across the whole frequency range of
the measurement) then we can see that in the
frequency-domain the two sources look quite
di�erent, and can be separated by the lock-in
technique.
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18.7 Low-Frequency or DC Sig-

nals

The approach outlined in section 18.6 above
works �ne for AC signals with a frequency that
it is su�ciently high that it is above the regime
where the 1/f noise dominates (recall the com-
posite noise spectrum �gure given in lectures).
Under these circumstances, the noise - mea-
sured in the same band as the signal - is usually
tolerable. However as the signal frequency re-
duces, and ultimately as we go towards a �DC�
measurement then the 1/f noise dominates and
eventually overwhelms the signal.

We may have a detector which gives a con-
stant voltage of a few µV with some volts RMS
of noise. Another example would be measur-
ing the intensity of light from a distant source,
when the detector output is swamped by am-
bient light. Or we could be trying to detect
faint radio-emission from a star. These mea-
surements are all small, constant values sub-
ject to noise. The solution here is to shift the
frequency of the signal to be measured from
near DC to a higher frequency (well above the
regime where the 1/f dominates).

This can be done by a variety of methods which
we will look at next, though they are all essen-
tially Modulation techniques, or as it is more
typically known for this application, Chop-
ping

18.8 Modulation Techniques

We can move a DC or very low-frequency signal
to a higher frequency by modulating or chop-
ping the signal. The name derives from optical
experiments where a 'chopper' wheel (a rotat-
ing blade) physically interrupts the light beam
in front of the detector. This modulates the
light beam from a constant to an on/o� signal
at a well de�ned frequency (given by the ro-
tation rate of the chopper wheel). In Fourier
terms, the signal changes from a delta func-
tion at zero frequency to a delta function at
the modulation frequency. This has the added
advantage that we can use the same frequency

source for the modulation and the reference of
the lock-in, so we are guaranteed to have the
same frequency. This is best illustrated with
an example31.

18.8.1 Demonstration Experiment us-
ing Light Intensity

Imagine we have an LED powered by a bat-
tery, and on the other side of the room we have
a photodetector32. The question is: can the de-
tector tell whether the light is on or not? In a
very dark room, with not too large a distance
between the two, it is possible. With the LED
o�, the trace on the 'scope is a noisy straight
line, and when we switch the LED on then the
line goes up just a little. Note here that the de-
tector is acting as an intensity meter. The LED
light is a constant output �DC� signal. The
detector responds to light of all visible wave-
lengths so when we switch the room lights on or
open the curtains the detector is �ooded with
ambient light millions of times brighter than
the LED. We have to drop down the scale of
the 'scope by several orders of magnitude to
get a new reading of the intensity. Now, if we
switch the LED o�/on we see no di�erence in
the trace because it is simply buried by the am-
bient light.

Now imagine we discard the battery and in-
stead power the LED with a sine wave from a
signal generator. This modulates the light in-
tensity from DC to the frequency of the signal
generator

I = I0 sinωt

Further, we also connect the signal generator
output to the reference input of a lock-in am-
pli�er, and the output of the detector the signal
input of the lock-in. Now we can synchronously
detect the LED intensity at the modulation fre-
quency. Because modulation and reference fre-
quencies are the same, we just need to adjust

31In fact this is a classic demonstration experiment
described in many texts, that is to say this is an actual
real, working example

32This might consist of a photo-diode connected to
an op-amp ampli�er with the output sent to a 'scope
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the phase knob to get a maximum output. We
will see a nice strong constant signal out of the
lock-in. If we disconnect the LED it goes to
zero. This works the same both in the dark
and in bright ambient light.

This is a striking example of extracting a tiny
signal from noise. To be clear about what's
happening here, we need to recall that

1. The modulated signal has a very narrow,
well-de�ned frequency

2. The noise has lots of sources: mostly the
more-or-less constant ambient light, plus
some 50 Hz from mains lights, plus 1/f
and thermal contributions from the detec-
tor system

3. Modulation moves the signal above the
low-frequency noise, to where we have just
the broad thermal noise etc

4. Consequently the noise, in the 1 Hz band-
width of the lock-in, is actually quite small

18.8.2 Chopping

The demonstration experiment in the previous
section is not very realistic, since it is usually33

impractical to electrically modulate the signal.
Usually the quantity to be measured needs to
be mechanically or optically �chopped�. The
name derives from optical experiments where
a rotating wheel or blade physically interrupts
a light beam and turns it from a constant
to a modulated quantity. Since we know the
frequency of the �chopper� wheel we can use
this as the reference for the lock-in. Typically
the arrangement is similar to that described
above except here the signal generator drives
the chopper. Typically our light signal derives
from some experiment, usually involving the
measurement of some low-level laser light.

33Though not always; there are some cases where the
electrical modulation method can be used though we
won't go into this here

18.8.3 Radio Astronomy

This is a very pleasing example of the chop-
ping technique taken from the world of radio
astronomy. A radio-telescope is a dish an-
tenna used to measure radio-frequency emis-
sion from distant stars34. The signal is very
faint, while noise sources abound: we have
the general cosmological background, terres-
trial (man-made) radio-sources, plus all the
usual electrical noise sources in the receiver.
To make this worse, �uctuations in the atmo-
sphere and ionosphere add extra low-frequency
noise to the signal. Radio-astronomers use the
chopping/synchronous-detection scheme as de-
scribed previously. This can be done by physi-
cally rocking the dish side-to-side thus sweeping
it across the target star. This directly mod-
ulates the signal intensity, while all the noise
sources remain the same. With large dishes
this is impractical, so often there is a secondary
re�ector at the focus of the dish (Cassegrain
type), and it su�ces to rock the secondary.
A further re�nement, which avoids any me-
chanical action (and can be run much faster)
is a setup which uses a single dish with two
signal-receiving waveguide/antennae. One is
exactly on-axis and receives the target signal,
the other is slightly o�-axis so it receives all the
noise sources but none of the signal from the
star. The radiometer (power-meter for radio-
frequency signals35) is electrically switched be-
tween the two sources at the modulation fre-
quency. Radio-astronomers refer to this as
�Dicke-Switching� after Robert Dicke who in-
vented the technique during the early days of
radar.

34Read more about radio as-
tronomy and radiometers at
www.nrao.edu/index.php/learn/radioastronomy/radiotelescopes
and www.cv.nrao.edu/course/astr534/Radiometers.html

35Note that the most sensitive radiometers use an-
other noise minimisation technique we have already
discussed: the receiver/ampli�er stages are frequently
cooled to cryogenic temperatures in order to minimise
thermal noise.
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