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Programme for the PG Instrumentation Lectures 

• Monday 29th November 10:00 - 11:30  
Principles of Instrumentation (Chris) 
 

• Monday 29th November 14:00 - 15:30  
Magnetic Field Instruments (Patrick) 
 

• Wednesday 8th December 10:00 - 12:00 
Student presentations and Q&A Session (Juliet) 

– For this you should prepare a 10-minute presentation about the 
instrumentation you are either 

a. Using for your project or 

b. Which generated the data you are using 
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Your presentation should cover some or all of these questions, at 
least in outline: 

1. How is the measurement made? What is the physical principle? 

2. What is the range, resolution and bandwidth of the measurement? 

3. How is the data calibrated, and what steps are taken to control both systematic and 

random errors? 

4. What is the accuracy of the measurement? 

5. What are the sources of noise? How is this minimised? 

6. Will these instrumentation considerations impose limits on your work? 

 
• Your projects cover a wide range of disciplines and techniques, so not all of these questions are 

appropriate 

• If you will be working with multiple data sets, you may like to concentrate on one measurement 
which is central to your work 

• For guidance don’t hesitate to contact either Juliet or myself! 
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Some Principles of Instrumentation 

This introductory lecture has four parts intended to help you 
answer these questions 

 

1. A Fourier understanding of Signals and Instrumentation 

2. Instrument characteristics and calibration 

3. Sampled and digitised signals 

4. Noise 
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Preliminary Comments 

• The relationship between the time and frequency domain is a 
central and recurring theme in instrumentation 

• Therefore we will  
– revise Fourier theory and 

– Develop a Fourier understanding of signals and instruments 
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Part 1 of 4 
Fourier Representation of Signals 

• Assuming our signal 𝑓 is a function of time 

• We must always consider the spectral content of our signal 

𝐹 𝜔 =  𝑓 𝑡 𝑒−𝑗𝜔𝑡𝑑𝑡
∞

−∞

 

𝑓 𝑡 =
1

2𝜋
 𝐹 𝜔 𝑒𝑗𝜔𝑡𝑑𝑡
∞

−∞

 

– Note engineers use 𝑗 to avoid confusion with current 𝑖 
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Pulse Function 

• Finite in time 

• Infinite in frequency 
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Theoretical (infinite) Signals 

• Conclude: 
– There is no such thing as a DC measurement 

– Constant or Repetitive input has well defined spectrum 

• Reality is or course more complex… 
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Finite Sinusoid 

• End-effects 

• In time-domain, the sinusoid is multiplied with a pulse 

• In frequency-domain, the spectra are convolved 
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The mathematical form of some real input 
signals used to test instruments 
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• Discontinuity at 𝑡 = 0 

• Impulse: When applied to an instrument, stimulates all frequencies 
simultaneously 

• Step input: more physically realisable 



Gaussian 

• Fourier Transform of a Gaussian is a Gaussian 

• Infinite in time and frequency domains 

 

• Question: how ‘wide’ are these shapes? 
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Width of an “Infinite” Pulse 

• For signal power (or intensity)  
Use Full-Width Half-Maximum definition 
– E.g. Gaussian power-profile from a pulsed-laser 

– Duration is 2.35𝜎  
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Bandwidth is width in the frequency domain 

• Bandwidth is FWHM of the power spectrum 

• Equivalently, if F 𝜔  represents amplitude spectrum, use -3dB 

10 log10
𝑃2
𝑃1
= 20 log10

𝐴2
𝐴1

 

10 log10
1

2
= 20 log10

1

2
= −3𝑑𝐵 
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Time-Bandwidth Relation 

• Consequently, for any pulse shape, there is a fixed 
relationship between time-duration and bandwidth 

 

• For a Gaussian the time-bandwidth product 
𝜏Δ𝜔 = 0.44 

 

• To preserve a pulse shape as it passes through an instrument, 
we must preserve the frequency content 

• Applies to any arbitrary input signal 
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Discussion question: 

• How much does it cost to build an instrument to generate this 
waveform? 
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Answer 

• A mathematically perfect voltage output is not possible 

• Bandwidth roughly ∝ cost 

• We will always lose some frequencies and corrupt the signal 

 

• Engineering: “The Art of Compromise” 
– Fidelity ∝ bandwidth but 

– Noise ∝ bandwidth and 

– Bandwidth costs money 

– Etc… 

• We must analyse all the trade-offs when designing the 
instrument 
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Example Instrument: Spectrum Analyser 

• Calibrated measurement of signal power as a function of frequency 

• Selectable bandwidth  
– equivalent to frequency-resolution, here 100 kHz 
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Key-Points 

• Mathematical representations of signals tend to have infinite 
bandwidths (Δ𝜔 → ∞) 

• Real signals tend to have very high Δ𝜔 

• Instruments tend to have rather limited Δ𝜔 
– Either  inherent or  

– Deliberate for 
• Noise reduction or 

• Stability  

 

• Our signal is a physical measureable 

• It is important to understand how finite bandwidth modifies 
the signal  
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Part 2 of 4 
Instrument Characteristics and Calibration 

• We wish to make a measurement 𝑓 𝑡  

• True value is unknowable 

• Aim is to minimise our systematic and random errors 

• Even the best instrument is only as good as the calibration 
standard or reference measurement 
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Random Errors 

• Mean is best estimate of True Value 

• Control random errors by 
– Design 

– Averaging to reduce measurement noise 
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Systematic Error 

• “Truth” ≡ Reference Measurement 

• “Bias” ≡ Systematic Error 

• “Precision” ≡ Std Deviation of distribution 
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Precision is not Accuracy 

 High Precision   Low Precision 
 Low Accuracy   High Accuracy 

 (Poor calibration)  (Bias well controlled) 
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Reference 
Measure-
ment 



Cartoon Version 
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Instrumental Effects 

• Calibration: Comparison 
with reference 
measurement 

• Quantify 
– Linearity 

– Dead-band 

– Hysteresis 

– Zero offset  
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Linearity & Zero Offset 

• Offset can be removed 

• Linearity more 
pernicious 

• Causes harmonic 
distortion for AC 
measurements 
– Minimise as highest 

priority 

– Limit operating range to 
linear regime 

– Use feedback 
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Uncontrolled External Input 

• Temperature-dependent sensitivity and offset 
• Other environmental considerations 

– Pressure, acceleration, vibration, illumination 
– Drift, ageing (electronic systems) 
– Wear (mechanical systems) 
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Calibration Principle 

• Compare against reference 
measurement with other 
input factors controlled / 
constant 
– Cover parameter space  

– Adjust external factors such as 
temperature 

– Multiple calibration curves 
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Calibration Principle 

• Helmholtz coils null Earth’s 
field and apply test B 

• Temperature-controlled Box 
houses Device Under Test 

• Reference magnetometer 
mounted outside box 
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Calibration Hierarchy 

Primary Standard e.g. NPL 
Accuracy ***** Cost £££££ 

Secondary Standard e.g. 
Specialist Calibration Lab 

Accuracy *** Cost £££ 

Tertiary Standard e.g. 
Industry in-house 
Accuracy * Cost £ 

Tertiary 
Standard 

Secondary 
Standard 

Tertiary 
Standard 

Secondary 
Standard  
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Our Reference Magnetometers are calibrated routinely by Ultra Electronics who are ISO 
9000 accredited. Their equipment calibration is traceable back to national standards. 
Each comparison loses some accuracy but the error is bounded and known.  



Dynamic Calibration 

• So far, we just considered Static Calibration 

• Generally our measureable is a function of time 

• For Dynamic Calibration measure 
– Frequency Response 

• Input is a sinusoid, swept across the bandwidth 

– Transient Response 

• Input is an impulse, step or ramp 
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Frequency Response 

• Bode Plot 
– Amplitude response 

– Phase response 

 

• The transfer function is 

𝐺𝑎𝑖𝑛 𝜔 =
𝑂𝑢𝑡𝑝𝑢𝑡 𝜔

𝐼𝑛𝑝𝑢𝑡(𝜔)
 

• Gain is 
– Complex 

– Frequency dependent 
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Practical Definition of 
“Instrument Bandwidth” 

The range of frequencies for which output is within ±3dB of the nominal Gain 
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±3dB 

Bandwidth  
800 Hz 



Transient Response 

• Impulse 𝛿 𝑡  response 
– Stimulates all frequencies simultaneously  

– Can be used for direct experimental determination of the transfer 
function 

– Difficult (impossible!) to generate  

• Step 𝑢 𝑡  response 
– More physically realisable 
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Step Response for a 2nd order  
linear dynamic system 

• Where the instrument response is 
modelled as a 2nd order differential 
equation 

𝑥 𝑡 = 𝑎0𝑦 𝑡 + 𝑎1
𝑑𝑦 𝑡

𝑑𝑡
+ 𝑎2
𝑑2𝑦 𝑡

𝑑𝑡2
 

   Input  Response 

 
• Typical of many electrical, mechanical, 

thermal etc measurement systems 

• Panels show instrument response as a 
function of time for cases no damping 
through to heavy damping 

• Critical damped case (panel 4) gives optimum 
balance between delay and oscillation 
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Consequences 

• Instrument transient response can be characterised by 
– “Rise-time” 

– “Over-shoot” 

– “Settling-time” 

 

• Too much damping kills-off frequency response 
– Reduces instrument bandwidth 

Instrumentation PG Lecture 35 



Key Points 

• The instrument is only as good as the reference measurement 
to which it is compared 

• Linearity is a prime consideration in instrument design 

• Systematic error is acceptable if quantifiable 

• Responsiveness in the time-domain must be traded-off 
against bandwidth 
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Part 3 of 4 
Digital Signals 

• Our measureable is a continuous function of (usually) time 

• Data is always sampled 

• The samples are always digitised 

• Each step we lose some information 
– we can model this as adding noise to the underlying signal 
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Sampling and Digitisation 

• Measureable 𝑓 𝑡  is a continuous function 
of time 

• 2 Stage process 
– Sampling quantises 𝑡 

– Digitisation quantises 𝑓 𝑡  
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Frequency Content of Sampled Signals 

• Sampled signal (time domain) 

𝑓𝑠 𝑡 =  𝑓 𝑛𝑇𝑠 𝛿(𝑡 − 𝑛𝑇𝑠)

∞

𝑛=−∞

 

𝑇𝑠 = sampling interval 

• Sampled signal (frequency domain) 

𝐹𝑠 𝜔 =
1

𝑇𝑠
 𝐹(𝜔 + 𝑛𝜔𝑠)

∞

𝑛=−∞

 

𝜔𝑠 =
2𝜋

𝑇𝑠
 

• Consequences: Sampled signal repeats in the frequency domain 
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Aliasing 

• Overlapping spectra 

• Higher frequency 
components of the 
signal are incorrectly 
represented as lower 
frequencies 

• Nyquist criterion 
(to avoid aliasing): 
Sampling frequency 
> 𝟐 × highest 
frequency component 
in 𝒇(𝒕) 
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Graphical Illustration of Aliasing 

• Solid line:    
𝑓(𝑡) 

• Dots: 
 samples 

• FFT will find 
lowest 
frequency 
sinusoidal fit to 
the dots 
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Avoid Aliasing! 
High priority in instrument design 

– Anti-alias filter 
• Filters the analogue signal 

• Removes frequencies higher than the Nyquist limit  
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Digitised Signals 

• Digitisation quantises 𝑓 𝑡  

• Results in quantisation 
error 

𝜎~
1

12
𝐿𝑆𝐵 

• LSB ≡ digital resolution 
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Range and Resolution 
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Input Range 

Digital 
Resolution 

Dynamic Range 

𝐷𝑅𝑑𝐵 = 20 log10
Range

Resolution
 

 
An 𝑛-bit ADC allows 2𝑛 digital values 

𝐷𝑅𝑑𝐵 = 20 log10 2
𝑛  

 



Key Points 

• Digital signals lose information which can never be recovered 

• Avoid aliasing at all costs: obey the Nyquist criterion 

• Know the quantisation error 

• Digital resolution should be consistent with other stochastic 
processes such as noise or random error 
– Contributions from these processes add in quadrature 
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Part 4 of 4 
Noise 

• Is usually the limiting factor in our measurement ability 

• Comes from  
– The sensor (physics of the measurement) 

– The electronics 

– Digitisation 

– Interference 
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Sources of noise in experimental data 

Total noise in measurement 

Intrinsic Noise 

Sensor 
physics 

E.g. 
Barkhausen 
noise from 
magnetic 
materials 

Sensor 
electronics 

Thermal noise Shot noise 

Measurement 
noise 

Quantisation 
noise 

Flicker or 
1

𝑓
 noise 

Extrinsic Noise 

Sensor 
Pickup 

Environmental 
Interference 

e.g. magnetic 
sources 

Electronic 
Interference 

Conductive 
pickup 

through 
power/signal 

wires 

Radiative 
pickup  by 

Magnetic field 
(inductive) or 
Electric Field 
(capacitive) 
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Noise comes from stochastic processes 

• Can only be described statistically 

• Amplitude probability function 
– Normal (Gaussian) for shot, thermal, flicker 

– Uniform (flat) for quantisation noise 

• Power Spectrum 
– Flat (white) for thermal, shot  

– ∝
1

𝑓
  (pink) 

for flicker 
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Example: Thermal Noise  
in sensors and electronics 

• Arises from the random thermal movement of conduction 
electrons 
– Function of temperature 

• The RMS noise voltage measured with an instrument 
bandwidth B is 

𝑉𝑛 = 4𝑘𝐵𝑇𝑅𝐵 

•  𝑇/°𝐾 

• 𝑅 Resistance 

• 𝐵 Bandwidth 
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Flicker or 
1

𝑓
 noise 
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Composite Noise Power Spectrum 
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Consequences and Mitigation 

• Noise is a function of physical parameters such as 
temperature, resistance, current but always bandwidth  

• Reducing bandwidth reduces total noise measured 

• Filter signal to remove unwanted frequency components 
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Key Points 

• Noise is inherent in ally physical processes and is a function of 
bandwidth 

• Most noise reduction techniques work by limiting the 
bandwidth of the measurement 

• We must balance this against the impact on signal fidelity 
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References, sources and further reading 

• Doebelin, E.O., Measurement Systems Application and Design (McGraw 
Hill, 2004) 

• Poularikas & Seeley, Elements of Signals and Systems  
(PWS Kent, 1988) 

• Smith, S. W., Scientist and Engineer’s Guide to Digital Signal Processing 
(Newnes, 2003) (also online at www.dspguide.com)  
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http://www.dspguide.com/

