


Ekman transport, pumping & gyres



Frictional effects: Ekman layer

* Near the Earth’s surface the geostrophic balance breaks down
because of friction, even in the limit of small Rossby number:

* The layer over which this occurs is called the Ekman layer, whose
thickness hek is on the order of

Mg = |—

f This is about 50m for the ocean and a
500-1000m for the atmosphere



Ekman layer in action: tea leaves in a cup

* Set in circular motion water in a cup with tea leaves. Let it spin down
and watch the tea leaves accumulate in the center

* “Rest frame” interpretation: inward radial pressure gradient is
approximately balanced by centripetal acceleration (VA2/r). Near the
bottom the centripetal acceleration is weaker (while horizontal

pressure gradient is unchanged) so there is an imbalance and inward
flow




Ekman layer in action: tea leaves in a cup

* Set in circular motion water in a cup with tea leaves. Let it spin down
and watch the tea leaves accumulate in the center

* “Rotating frame” (take it anti-clockwise, as seen from the lab)
interpretation: the flow near the bottom is clockwise and a Coriolis
force acts on it towards the center (this force is larger than the
advection of angular momentum in the limit Ro<<1). So there is an
imbalance and inward flow




Ekman layer in the atmosphere (near the
Earth’s surface)

* Flow is inward in low pressure
systems (cyclones) 2 upward motion

* Flow is outward in high pressure
systems (anticyclones) - downward
motion

 NB Useful result: the inward/outward
mass flux integrated over the depth
of the Ekman layer is at a right angle

to the surface friction force (=“Ekman Surface weather chart on 10/02/2008 with surface
tra nspo rt”) flow (arrows with quiver every 5m/s) and surface

pressure (ci=4hPa). From Tandon & Marshall (2008)




Coupling of oceanic & atmospheric Ekman layers

* Over the ocean the same frictional Am ““‘“‘;"‘““‘" X/t
force is shared by the atmosphere and
the ocean at the sea surface :
— wiross Ko
* This drives the same amount of mass Sl amnaide (in N/m2)
transport in the outward/inward - ﬂcﬁ:;}zwww
circulation: the Ekman transport are Ocasric Ekmon moss tronsport Xy /1
equal in magnitude but opposite in
direction

From Gill (1982, Chapter 9)



Ekman layers and Hadley, Ferrell, polar cells
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Convergence/divergence of Ekman transport

Polar

* ..leads to regions of downwelling Trade winds Westerly wind easterlies
and upwelling & ® O ®

* The associated vertical motion is on | 1 | T
the order of ~30m/yr

Ekman Pumping (mdy)
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‘\The “bowl shape” of the thermocline is a

consequence of the convergence of Ekman currentim
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Ocean ZVYI'ES (as seen at the sea surface)

Annual mean dynamic topography (1993-2002) from Maximenko et al. (2009)—-CI = 10cm
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Vertically averaged circulation (in Sv
from ocean floats & hydrography
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NB 1Sv = 1079 kg/s

De Verdiere and Ollitraut (2016)



Ocean eddies



Oceans and atmosphere in real time...
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In-situ observations are dominated by a “meso-scale’
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In — situ velocity measurements

Amplltude of tlme variability
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NB: Energy at period < 1 day was removed
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Role of “ocean eddies”

* Upward transport of heat (warm
fluid goes up, cold fluid goes down)

* This maintains sharp temperature
variations in the vertical direction
(warm at upper levels, cold at
deeper levels)

e Stir tracers (physical, chemical,
biological) throughout the ocean

* Key role in ocean heat uptake



“Thermohaline circulation”



World Ocean Atlas Salinity (0-500m)
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Salinity [pss-78]
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Figure 4. A map of circulation *C age below 1500 m. This is equivalent to conventional *C age
(Figure 1) but accounts for surface ocean ' ‘C reservoir age and the different sources of deep water. Unit is

years.
Matsumoto, JGR 2007
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