E. Gryspeerdt

24.11.17

1. Radiation and optical depths

A satellite is viewing a cloud (optical depth τ_c) above a surface at temperature T_{surf} at a wavelength where the atmosphere is transparent and non scattering.

- (a) What is the radiance observed by the satellite for a cloud at a constant temperature T_{cloud} ? How optically thick does the cloud have to be before only 5% of the radiance is a contribution from the surface? (Hint: Consider the Schwarzschild equation with a constant cloud source function B_{cloud})
- (b) The temperature variation is small, so the Planck function can be linearised $(B = B_0 + B_1 \Delta T)$. If the temperature in the cloud varies linearly $(\Delta T = \alpha \tau)$, what is the observed radiance?
- (c) If the cloud is optically thick ($\tau_c >> 1$), what is the effective emitting temperature of the cloud? What optical depth does this correspond to?
- (d) (Extra points) How does this change for a cloud with an arbitrary emission profile $B_{cloud}(\tau) = f(\tau)$?

2. The Venusian atmosphere

The solar constant on Venus is about twice that for Earth, at 2,626 Wm⁻² but it's bond albedo is larger (0.76). It has a similar surface gravity (8.88 ms⁻¹), but the atmosphere is composed primarily of CO₂ ($c_p = 830$ J kg⁻¹K-1).

- (a) What is the equilibrium emitting temperature (T_E) of Venus?
- (b) Calculate the temperature of the stratosphere (assuming it is optically thin)
- (c) What is the lapse rate?
- (d) The surface temperature is 730K, how high is the tropopause? How does this compare to Earth?

3. A simple radiative balance model

- (a) Using sensible values (for Earth) of ϵ_A (0.8), S_0 (1361 Wm⁻²) and α (0.3), estimate T_A and T_S for this simple model of the atmosphere
- (b) Calculate the surface emission
- (c) Estimate the "effective radiating emissivity" ϵ' , the emissivity required for the outgoing longwave radiation (OLR) to be equal to $\epsilon' \sigma T_S^4$.

Increasing CO₂ leads to a radiative forcing of $\Delta F_{CO_2} = 5.35 \ln(CO_2/CO_2^{initial})$

- (d) Calculate the new OLR immediately after doubling $\rm CO_2$
- (e) What is the new ϵ' and what change in T_S is required to restore net balance at the TOA?
- (f) What sort of feedbacks might be operating in this system? How could you express them mathematically?