Climate change (part 1) How did we get here?

Edward Gryspeerdt

November 21, 2017

"Rain follows the plow"

The Greeks and Romans had ideas about climate change

"... places that formerly enjoyed a good climate deteriorate and grow dry. [...] In the time of the Trojan War, Argos was marshy [...], while Mycenae was good land [...]. Now the opposite is the case"

- Aristotle - Meteorologica (~350 BC)

Image: Wikipedia-leaflet

"Rain follows the plow"

The Greeks and Romans had ideas about climate change

"... places that formerly enjoyed a good climate deteriorate and grow dry. [...] In the time of the Trojan War, Argos was marshy [...], while Mycenae was good land [...]. Now the opposite is the case"

- Aristotle - Meteorologica (~350 BC)

Settlers in the new world had the theory that new settlements brought rain through agriculture

Image: Wikipedia-leaflet

The importance of an atmosphere

1820s: Fourier is credited with discovering the "greenhouse effect"

"The establishment and progress of human societies, the action of natural forces, can notably change, and in vast regions, the state of the surface, the distribution of water and the great movements of the air." "Such effects are able to make to vary, [...] the state of the surface and which greatly influence the temperature."

Carbonic Acid=2.0.				
Dec Feb.	March May.	June- Ang.	Sept Nov.	Mean of the year.
6.0	6.1	6.0	6.1	6.05
6.1	6·1	5.8	6·1	6.02
6.1	6·1	5.5	6·0	5.92
6.0	5.8	5 •4	5.6	5.7
5.6	5.4	5.0	$5 \cdot 2$	5.3
$5\cdot 2$	5'0	4.9	5.0	5.02
5.0	5.0	4 ·9	4.9	4.95
4.9	4 ·9	5.0	5.0	4'95
5.0	5.0	$5\cdot 2$	5.1	5.07
5.2	5.3	5.2	5.4	5.35
5.5	5'6	5.8	5.6	5.62
5.8	6-0	6.0	6.0	5.95
6.0	6.1	-	—	-

 1860s: John Tyndall showed that water vapour, hydrocarbons and CO₂ are all strong abosrbers of infra-red radiation.

Carbonic Acid=2.0.				
Dec Feb.	March May.	June- Aug.	Sept Nov.	Mean of the year.
6.0	6.1	6.0	6.1	6.05
6.1	6·1	5.8	6·1	6.02
6.1	6·1	5.5	6·0	5.92
6.0	5.8	5 •4	5.6	5.7
5.6	5.4	5.0	$5 \cdot 2$	5.3
$5\cdot 2$	5'0	4.9	5.0	5.02
5.0	5.0	4 ·9	4.9	4.95
4.9	4 ·9	5.0	5.0	4'95
5.0	5.0	$5 \cdot 2$	5.1	5.07
5.2	5.3	5.2	5.4	5.35
5.5	5'6	5.8	5.6	5.62
5.8	6.0	6.0	6.0	5.95
6.0	6.1	-	-	-

- 1860s: John Tyndall showed that water vapour, hydrocarbons and CO₂ are all strong abosrbers of infra-red radiation.
- 1896: Svante Arrhenius (also known for his theory of acids) calculated how much a CO₂ change would warm the Earth

Carbonic Acid=2.0.				
Dec Feb.	March May.	June- Aug.	Sept Nov.	Mean of the year.
6.0	6.1	6.0	6.1	6.05
6.1	6.1	5.8	6·1	6.02
$6 \cdot 1$	6.1	5.5	6·0	5.92
6.0	5.8	5 •4	5.6	5.7
5.6	5.4	5.0	$5 \cdot 2$	5.3
$5 \cdot 2$	5'0	4.9	5.0	5.02
5.0	5.0	4.9	4 ·9	4.95
4.9	4 ·9	5.0	5.0	4'95
5.0	5.0	$5\cdot 2$	5.1	5.07
5.2	5.3	5.2	5.4	5.35
5.5	5'6	5.8	5.6	5.62
5.8	6.0	6.0	6.0	5.95
6.0	6.1	-	—	-

- 1860s: John Tyndall showed that water vapour, hydrocarbons and CO₂ are all strong abosrbers of infra-red radiation.
- 1896: Svante Arrhenius (also known for his theory of acids) calculated how much a CO₂ change would warm the Earth
 - Double the CO₂ gives a warming of 5-6°C

Carbonic Acid=2.0.				
Dec Feb.	March May.	June- Aug.	Sept Nov.	Mean of the year.
6.0	6.1	6.0	6.1	6.05
6.1	6·1	5.8	6·1	6.02
$6 \cdot 1$	6·1	5.5	6·0	5.92
6.0	5.8	5 •4	5.6	5.7
5.6	5.4	5.0	$5 \cdot 2$	$5^{.}3$
$5\cdot 2$	5'0	4.9	5.0	5.02
5.0	5.0	4 ·9	4.9	4.95
4.9	4 ·9	5.0	5.0	4'95
5.0	5.0	$5 \cdot 2$	5.1	5.07
5.2	5.3	5.2	5.4	5.35
5.5	5'6	5.8	5.6	5.62
5.8	6.0	6.0	6.0	5.95
6.0	6.1	-	-	-

- 1860s: John Tyndall showed that water vapour, hydrocarbons and CO₂ are all strong abosrbers of infra-red radiation.
- 1896: Svante Arrhenius (also known for his theory of acids) calculated how much a CO₂ change would warm the Earth
 - Double the CO₂ gives a warming of 5-6°C
 - "This might be nice"...

Greenhouse gases (2)

- 1948: Guy Callender (a steam engineer) revived Arrhenius' work
- Suggested that a recent increase in temperature and CO₂ were linked
- The response from scientists at the time sounds familiar...

Greenhouse gases (3)

"Perhaps the correlation between temperature and CO₂ change is a coincidence"

"The ocean absorbs large amounts of CO₂. How can this be a man-made change?"

"The ocean absorbs large amounts of CO₂. How can this be a man-made change?"

"Is CO2 really changing?"

"The ocean absorbs large amounts of CO₂. How can this be a man-made change?"

"Is CO2 really changing?"

"The atmosphere has changed before"

"The ocean absorbs large amounts of CO₂. How can this be a man-made change?"

"Is CO2 really changing?"

"The atmosphere has changed before"

"The Arctic is warming much faster. CO_2 would not produce such an effect so CO_2 cannot be responsible for any of the temperature change"

Scientific assessments

Evidence built further through the 60's and 70's

Monthly mean GO₂ concentration

The Keeling Curve shows a strong increase in atmospheric CO_2 from the 1950s to the present

Image: Wikipedia-delorme

Scientific assessments

Evidence built further through the 60's and 70's

The Keeling Curve shows a strong increase in atmospheric CO_2 from the 1950s to the present

The increase of 25% CO2 expected by the end of the century therefore corresponds to an increase of 0.6°C in the world temperature, an amount somewhat greater than the climatic variation of recent centuries.

— John Sawyer (Director of Research, UK Met Office. 1972) Image: Wikipedia-delorme

The "Charney report"

The "Charney report" by the US National Research Council, produced an estimate of the climate sensitivity (the warming due to the doubling of CO₂)

Carbon Dioxide and Climate: A Scientific Assessment

Report of an Ad Hoc Study Group on Carbon Dioxide and Climate Woods Hole, Massachusetts July 23-27, 1979 to the Climate Research Board Assembly of Mathematical and Physical Sciences National Research Council

"When it is assumed that the CO₂ content of the atmosphere is doubled and statistical thermal equilibrium is achieved, the more realistic of the modeling efforts predict a global surface warming of between 2°C and 3.5°C, with greater increases at high latitudes."

- J. Charney et al. (1979)

The World Meteorological Organisation (WMO) formed the Intergovernmental Panel on Climate Change (IPCC) in 1988.

The aim of the IPCC is to review and summarise current literature

- It does no research of it's own
- ► Produces reports every ≈6 years (1990, 1995, 2001, 2007, 2013)

The first (FAR) lead to the creation of the United Nations Framework Convention on Climate Change (UNFCCC)

Objective: "stabilize greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system"

It sets non binding limits on greenhouse gas emissions for developed (Annex I) countries and contains no enforcement mechanisms.

Objective: "stabilize greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system"

It sets non binding limits on greenhouse gas emissions for developed (Annex I) countries and contains no enforcement mechanisms.

The parties to the convention meet annually at the "Conference of Parties" (COP)

Objective: "stabilize greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system"

It sets non binding limits on greenhouse gas emissions for developed (Annex I) countries and contains no enforcement mechanisms.

The parties to the convention meet annually at the "Conference of Parties" (COP)

 Kyoto (1997) - Set legally binding obligations to reduce GHG emissions

Objective: "stabilize greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system"

It sets non binding limits on greenhouse gas emissions for developed (Annex I) countries and contains no enforcement mechanisms.

The parties to the convention meet annually at the "Conference of Parties" (COP)

- Kyoto (1997) Set legally binding obligations to reduce GHG emissions
- Cancún (2010) Agree warming should be limited to 2°C

Objective: "stabilize greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system"

It sets non binding limits on greenhouse gas emissions for developed (Annex I) countries and contains no enforcement mechanisms.

The parties to the convention meet annually at the "Conference of Parties" (COP)

- Kyoto (1997) Set legally binding obligations to reduce GHG emissions
- Cancún (2010) Agree warming should be limited to 2°C
- Paris (2015) Aim to limit warming to less than 2°C, try for 1.5°C

IPCC Assessment reports

Currently three working groups

- WG1: Physical science basis
- WG2: Impacts and adaptation
- WG3: Mitigation of climate change
- (Synthesis report)

IPCC Assessment reports

Currently three working groups

- WG1: Physical science basis
- WG2: Impacts and adaptation
- WG3: Mitigation of climate change
- (Synthesis report)

These all have hundreds of authors, but are based on consensus

Results in a tendency towards conservative estimates

IPCC Assessment reports

Currently three working groups

- WG1: Physical science basis
- WG2: Impacts and adaptation
- WG3: Mitigation of climate change
- (Synthesis report)

These all have hundreds of authors, but are based on consensus

- Results in a tendency towards conservative estimates
 Each report has a "summary for policymakers" (SPM), including the synthesis report
 - The rest of the lecture is loosely based on the WG1 SPM

ZWISCHENSTAATLICHER AUSSCHUSS FÜR Klimaänderung

KLIMAÄNDERUNG 2013 Wissenschaftliche Grundlagen

ZUSAMMENFASSUNG FÜR POLITISCHE ENTSCHEIDUNGSTRÄGER

IPCC terminology

Warming of the climate system is unequivocal, and since the 1950s, many of the observed changes are unprecedented over decades to millennia. The atmosphere and ocean have warmed, the amounts of snow and ice have diminished, sea level has risen, and the concentrations of greenhouse gases have increased (see Figures SPM.1, SPM.2, SPM.3 and SPM.4). (2.2, 2.4, 3.2, 3.7, 4.2-4.7, 5.2, 5.3, 5.5-5.6, 6.2, 13.2)

IPCC terminology

Warming of the climate system is unequivocal, and since the 1950s, many of the observed changes are unprecedented over decades to millennia. The atmosphere and ocean have warmed, the amounts of snow and ice have diminished, sea level has risen, and the concentrations of greenhouse gases have increased (see Figures SPM.1, SPM.2, SPM.3 and SPM.4). (2.2, 2.4, 3.2, 3.7, 4.2-4.7, 5.2, 5.3, 5.5-5.6, 6.2, 13.2)

High confidence	Term	Probability
 Robust evidence, 	Virtually Certain	99-100%
agreement	Extremely likely	95-100%
Medium confidence	Very likely	90-100%
Medium	Likely	66-100%
evidence,	About as likely as not	33-66%
agreement	Unlikely	0-33%
Low confidence	Very unlikely	0-10%
 Limited evidence, agreement 	Exceptionally unlikely	0-1%

(b)

Observed change in surface temperature 1901-2012

Total warming 1880-2012 is 0.85[0.65 to 1.06]°C

(b)

Observed change in surface temperature 1901-2012

- ► Total warming 1880-2012 is 0.85[0.65 to 1.06]°C
- 1983-2012 was the warmest 30 years in the last 1400 years.

(b)

Observed change in surface temperature 1901-2012

- ► Total warming 1880-2012 is 0.85[0.65 to 1.06]°C
- 1983-2012 was the warmest 30 years in the last 1400 years.
- Mid latitude precipitation in the northern hemisphere has increased

(b)

Observed change in surface temperature 1901-2012

- ► Total warming 1880-2012 is 0.85[0.65 to 1.06]°C
- 1983-2012 was the warmest 30 years in the last 1400 years.
- Mid latitude precipitation in the northern hemisphere has increased

How do we know?

- Surface temperature and precipitation measurements
- Satellite temperature retrievals

Atmosphere:Extreme events

(a) Cold Nights

 Cold days and nights have decreased

Trend in the number of cold nights

Atmosphere:Extreme events

(a) Cold Nights

Trend in the number of cold nights

- Cold days and nights have decreased
- Heat waves have increased in Europe, Asia and Australia

Atmosphere:Extreme events

(a) Cold Nights

Trend in the number of cold nights

- Cold days and nights have decreased
- Heat waves have increased in Europe, Asia and Australia
- Heavy precipitation events have increased in N. America and Europe
Atmosphere:Extreme events

(a) Cold Nights

Trend in the number of cold nights

- Cold days and nights have decreased
- Heat waves have increased in Europe, Asia and Australia
- Heavy precipitation events have increased in N. America and Europe

How do we know?

- Surface temperature and precipitation measurements
- Satellite temperature retrievals

The upper ocean has warmed at 0.11C per decade since 1970

- The upper ocean has warmed at 0.11C per decade since 1970
- >90% of the energy increase has gone into the ocean

- The upper ocean has warmed at 0.11C per decade since 1970
- >90% of the energy increase has gone into the ocean
- There is no evidence of a trend in ocean overturning circulation

- The upper ocean has warmed at 0.11C per decade since 1970
- >90% of the energy increase has gone into the ocean
- There is no evidence of a trend in ocean overturning circulation
- Sea level rise was 3.2mm yr⁻¹ between 1993 and 2010

- The upper ocean has warmed at 0.11C per decade since 1970
- >90% of the energy increase has gone into the ocean
- There is no evidence of a trend in ocean overturning circulation
- Sea level rise was 3.2mm yr⁻¹ between 1993 and 2010
- Extreme high sea level events are more common

- The upper ocean has warmed at 0.11C per decade since 1970
- >90% of the energy increase has gone into the ocean
- There is no evidence of a trend in ocean overturning circulation
- Sea level rise was 3.2mm yr⁻¹ between 1993 and 2010
- Extreme high sea level events are more common

How do we know?

- Surface and float temperature measurements
- Tide gauges and satellite altimetry

Greenland and Antarctic ice sheets have been losing mass

- Greenland and Antarctic ice sheets have been losing mass
- Northern Hemisphere snow cover has decreased

- Greenland and Antarctic ice sheets have been losing mass
- Northern Hemisphere snow cover has decreased
- Permafrost area has decreased

- Greenland and Antarctic ice sheets have been losing mass
- Northern Hemisphere snow cover has decreased
- Permafrost area has decreased
- The Arctic has warmed faster than the rest of the globe

- Greenland and Antarctic ice sheets have been losing mass
- Northern Hemisphere snow cover has decreased
- Permafrost area has decreased
- The Arctic has warmed faster than the rest of the globe

How do we know?

- Satellite and surface altimetry of ice sheets
- Satellite measurements of sea ice
- Surface observer reports

 CO₂, CH₄, NO_x are at levels unprecedented in the last 800,000 years

- CO₂, CH₄, NO_x are at levels unprecedented in the last 800,000 years
- CO₂ has increased 40% since 1750, mostly from fossil fuel emissions

- CO₂, CH₄, NO_x are at levels unprecedented in the last 800,000 years
- CO₂ has increased 40% since 1750, mostly from fossil fuel emissions
- Ocean pH has decreased by 0.1 since 1750

- CO₂, CH₄, NO_x are at levels unprecedented in the last 800,000 years
- CO₂ has increased 40% since 1750, mostly from fossil fuel emissions
- Ocean pH has decreased by 0.1 since 1750

How do we know?

- In-situ gas concentration measurements
- Satellite remote sensing
- Ice core measurements/proxies

Radiative forcing (RF) quantifies the change in energy fluxes caused by a climate change driver.

- Positive RF leads to surface warming
- Negative RF leads to cooling

The total RF is positive, with the leading component being greenhouse gases

Key points:

 The total RF is positive

- The total RF is positive
- GHGs drive the magnitude of the RF

- The total RF is positive
- GHGs drive the magnitude of the RF
- CO₂ is not the only GHG

- The total RF is positive
- GHGs drive the magnitude of the RF
- CO₂ is not the only GHG
- Much of the uncertainty comes from aerosols (and their interaction with clouds)

- The total RF is positive
- GHGs drive the magnitude of the RF
- CO₂ is not the only GHG
- Much of the uncertainty comes from aerosols (and their interaction with clouds)
- The natural and solar components are small

Summary (part 1)

- Our understanding of the climate system and climate change has accelerated in the last 30 years
 - The IPCC reviews current knowledge, providing a scientific consensus view on changes in the climate

IPCC INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

Summary (part 1)

- Our understanding of the climate system and climate change has accelerated in the last 30 years
 - The IPCC reviews current knowledge, providing a scientific consensus view on changes in the climate
- The Earth has warmed significantly
 - It is the warmest it has been for the last 1400 years

Summary (part 1)

- Our understanding of the climate system and climate change has accelerated in the last 30 years
 - The IPCC reviews current knowledge, providing a scientific consensus view on changes in the climate
- The Earth has warmed significantly
 - It is the warmest it has been for the last 1400 years
- The anthropogenic radiative forcing is positive
 - CO₂ is the largest forcer
 - Aerosol effects are the most uncertain

