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1. A brief intro to climate models

2. Feedback processes

3. Quantifying global climate change:
equilibrium climate sensitivity

4. Regional climate change: focus on 6T
and OF patterns

5. Detection & attribution of climate change
(spoiler alert: we're doing it)




Climate models are used for fundamental research
and future predictions
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Climate models are used for fundamental research
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and future predictions

* A ‘computational lab’ for fundamental
research + a ‘prediction tool’ for future
sauree  CliIMate
"« Attempt to simulate many processes: fluid
_,T.__,t_ dynamics, radiation, biosphere, ice physics,
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RARA atmospheric chemistry, ocean biology...

-+ Many timescales: convection (hours),

«ms  Mdlatitude cyclones (days), radiation
(month), upper ocean (months/years), deep
ocean (>100 years), ice sheets (1000 years),
chemical weathering (1,000,000 years)

- Useful but uncertain!



Evolution of climate models over time

The world in global climate models
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Useful but uncertain: Challenges in climate
modadelling

Horizontal grid
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e computational capacity -> important
processes cannot be resolved by global
models so need to be “parameterised” (e.Q.
clouds)
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Useful but uncertain: Challenges in climate

modelling
e o - * Insufficient resolution: Limited
r—— (VA == computational capacity -> important

Height or pressure

processes cannot be resolved by global
models so need to be “parameterised” (e.Q.
clouds)

<= . Structural uncertainty: We know exact
mathematical description of tfluid motion
(Navier-Stokes) but not of vegetation,
ohytoplankton, ice dynamics...

Physical processes in a model
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Problem of [imited resolution in global climate
modadelling

Atmosphere: Can simulate
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typical atmosphere-ocean
climate model resolution

midlatitude cyclone, plan

etary

circulations (e.g. Hadley cell) but not
convection, clouds, hurricanes, etc.

Clouds and convection p
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important for determining magnitude
of future climate change — their
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Problem of [imited resolution in global climate
modadelling

* Ocean: Full of macro turbulence and eddies which cannot be resolved
by global climate models. Again, need paramaterisations to capture
effects of these eddies on climate (e.g. heat transport, Gent-McWillilams)

video of ocean eddies



https://www.youtube.com/watch?v=pChhyK0pwhI

Climate change: We will not be able to compute the exact
answer anytime soon (because of low subtropical clouds)

Horizontal resolution (km™')
(sdoyj9) @duewioiad 193ndwo)

Schneider et al.
(Nat. Climate
Change, 2016)




Climate change: We will not be able to CompuTe the exact
answer anytime soon (because of low subtropical clouds)

resolving low clouds
(10m resolution)
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Climate modelling is not only about making detailed predictions
of the future: fundamental research with simplitied models

Some examples of simplified models used in
climate research:
 Small-domain cloud-resolving models
(sacrifice global coverage in order to
simulate small-scale processes)
 Ocean-only models
 Atmosphere-only "aguaplanet”
models

video of a “large-eddy simulation”



https://vimeo.com/147025160

Evaluation of climate models: They capture
historical global warming reasonably well

(a) Observed and CMIP5 simulated global mean surface air temperature
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Evaluation of climate models: They capture
historical global warming reasonably well
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Fvaluation of climate models: Not all historical
climate trends are well simulated

(a) CMIP5 O-70pm ocean heat cqntent change (1q22J)
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How large Is the global climate response to
radiative forcing (e.g. CO,)? Feedback processes

top-of-atmosphere energy surface temperature
imbalance [W/m2/K] l / change

Climate change equation:  Forcing = Rroa — AT’

T

climate feedback parameter [W/m2/K]

Key assumption for climate feedback analysis: Radiative response is linearly
proportional to oT




How large Is the global climate response to
radiative forcing (e.g. CO,)”? Feedback processes

top-of-atmosphere energy surface temperature
impalance [W/m2/K] l / change

Climate change equation:  Forcing = Rroa — AT’

ST Rroa —)\Forcing

AToA HTOA Hroa = 0O

0T =0 0T > 0 01 > ()




‘Gregory plot”: Response of climate system to an
abrupt radiative forcing is roughly linear
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‘Gregory plot”: Response of climate system to an
abrupt radiative forcing is roughly linear
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Climate teedback parameter determines the temperature response to
radiative forcing, includes many positive and negative feedback processes

total feedback parameter individual feedback
("the slope’) Orocesses

Positive or negative feedback processes in the climate system?



Climate teedback parameter determines the temperature response to
radiative forcing, includes many positive and negative feedback processes
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1. Negative (cooling) feedback: Planck
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Climate teedback parameter determines the temperature response to
radiative forcing, includes many positive and negative feedback processes
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Climate teedback parameter determines the temperature response to
radiative forcing, includes many positive and negative feedback processes
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Climate system has a variety of physical feedback
orocesses, some more certain than others

L 8'
= : & Clouds, particularly low clouds,
2 : : drive most of the uncertainty in the
: '
- ' ST of climate change... Lots of
g 2 , people trying to fix this (e.g. Ed!)
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Quantifying climate climate: The “equilibrium
climate sensitivity” (ECS)

ECS: Change in global-mean
surface temperature at equilibrium
following a doubling of CO>

net downward radiative flux (W m?)

Change in
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Uncertainty in ECS is large...

4 (b) O Oo
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What have we actually learned about climate
change over the last 40 years”!

When it is assumed that the CO, content of the atmosphere is doubled and
statistical thermal equilibrium is achieved, the more realistic of the modeling
efforts predict a global surface warming of between 2°C and 3.5°C, with
greater increases at high latitudes. This range reflects both uncertainties in
physical understanding and inaccuracies arising from the need to reduce the
mathematical problem to one that can be handled by even the fastest avail-
able electronic computers. It is significant, however, that none of the model

calculations predicts negligible warming.

“Carbon dioxide and climate: a scientific assessment” (J. Charney et al, 1979)



What have we actually learned about climate
change over the last 40 years”!

When it is assumed that the CO, content of the atmosphere is doubled and
statistical thermal equilibrium is achieved, the more realistic of the modeling
efforts predict a global surface warming of between with
greater increases at high latitudes. This range reflects both uncertainties in
physical understanding and inaccuracies arising from the need to reduce the
mathematical problem to one that can be handled by even the fastest avail-
able electronic computers. It is significant, however, that none of the model

calculations predicts negligible warming.

IPCC ARS5: 1.5K t0 4.5K

“Carbon dioxide and climate: a scientific assessment” (J. Charney et al, 1979)



Patterns of climate change: Surface temperature

and precipitation
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Patterns of climate change: Surface temperature
and precipitation

RCP 2.6 RCP 85
(@) Change in average surface temperature (1986-2005 to 2081-2100)

Dominant large-scale spatial
patterns??
1. Land-ocean warming contrast
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Patterns of climate change: Surface temperature
and precipitation

RCP 2.6 RCP 85
(@) Change in average surface temperature (1986-2005 to 2081-2100)

Dominant large-scale spatial
patterns??

1. Land-ocean warming contrast
2. Polar-amplified warming
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Patterns of climate change: Surface temperature
and precipitation

oT oP
RCP 2.6 RCP 8.5
(a) Change in average surface temperature (1986-2005 to 2081-2100)
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Patterns of climate change: Surface temperature
and precipitation

RCP 2.6 RCP 85
(a) Change in average surface temperature (1986-2005 to 2081-2100)
' 'bd e _ 32

Dominant large-scale spatial

patterns??

1. Land-ocean warming contrast v S o T
2. Polar-amplitied warming E—— T e e ——
3. "Wet get wetter, dry get drier”
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How do we know that humans are responsible”
"Detection & attribution”
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