Neutral Atmospheres:

Problem Sheet

Ingo Mueller-Wodarg

I: State which bodies in the solar system have permanent atmospheres and name examples for those who don't. What basic parameters determine whether or not a body has an atmosphere and whether or not it hangs on to it?

Permanent atmospheres:

Venus, Earth, Mars, Jupiter, Saturn, Titan, Uranus, Neptune, Triton, Pluto

Transient atmospheres: Mercury, Moon, Callisto, Ganymede, Europa, Io, Comets

$$F_{esc} = \frac{n r}{2\sqrt{\pi}} \cdot \left(\frac{2 k T}{m}\right)^{\frac{1}{2}} \cdot (\lambda + 1) e^{-\lambda} \qquad \text{Jeans escape flux}$$

$$\lambda = \frac{gravitational \ potential \ energy}{random \ kinetic \ energy} = \frac{r_{exobase}}{H} \qquad \begin{array}{c} \text{Lambda parameter indicates} \\ \text{how transient an atmosphere} \\ \text{is} \end{array}$$

Ingo Mueller-Wodarg

2: For the terrestrial planets solar radiation constitutes overall the major energy source. The solar constant denotes the energy flux per unit area (in W/m²) at I AU distance from the Sun. A typical value is I 366 W/m².

a. Calculate the average energy flux you expect to find for Venus and Mars

Venus: $d = 0.72 \text{ AU} => F = 1366 \text{ W/m}^2 * (1 / 0.72)^2 = 2635 \text{ W/m}^2$ Mars: $d = 1.55 \text{ AU} => F = 1366 \text{ W/m}^2 * (1 / 1.55)^2 = 569 \text{ W/m}^2$

b. Calculate and compare the average solar energy that you would expect to be intersected by Earth, Mars and Venus (using cross sections of each planet)

Earth: R = 6371 km => E = $F * A = F * \pi R^2 = 1.8 \times 10^{17} W$ Venus: R = 6052 km => E = $F * A = F * \pi R^2 = 3.0 \times 10^{17} W$ Mars: R = 3380 km => E = $F * A = F * \pi R^2 = 2.0 \times 10^{16} W$

c. Compare values under (a) with actual exospheric temperatures in the atmospheres of Earth, Mars and Venus. Do the temperatures follow the same trend with distance from Sun as the energy flux? If not, briefly discuss any possible reasons for discrepancies.

 $T_{exo} (Earth) = 1000\pm400 \text{ K}$ $T_{exo} (Mars) = 250\pm80 \text{ K}$ $T_{exo} (Venus) = 220\pm60 \text{ K}$ $CO_2 15 \mu \text{m cooling - modulated by O atoms}$

3: Assume an atmosphere composed of gases O and CO₂ with molecular weights of $m_1=16$ AMU and $m_2=44$ AMU. Assume a heightindependent gravity of g=8.47 m/s² and constant temperature of T=300 K. The mixing ratio X_i of gas i is defined as $X_i = n_i/n$, where n_i and nare number densities of gas i and of the total atmosphere, respectively. At the homopause (120 km) the gas densities are $n_1=3.17\times10^{10}$ cm⁻³ and $n_2=1.64\times10^{13}$ cm⁻³.

a. Calculate the CO₂ and O densities and mixing ratios at 200 km altitude. One efficient way of doing this is with a small computer routine, or alternatively an Excel spreadsheet. Use a vertical integration step of 5 km.

b. At which altitude are both gases equally abundant?

	Basic qua	ntities						
	T=	300.0000	К					
	X10=	0.0020						
	X20=	0.9980						
	m1=	16.0000	amu					
	m2=	44.0000	amu					
	Grav=	8.4700	m/s2					
,	z0 =	120.0000	km					
	ztop =	160.0000	km					
0	delta_z=	5.0000	km					
	R=	8313.2530						
	CO2 =	1.64E+13	cm-3					
	0 =	3.17E+10	cm-3					
ſ	BZ =	1.38E-23	[S.I.]					
T					~			
	Z F	1002	HO	CO2	0		X(CO2)	X(0)
	120.0	6.6920	18.4030	1.640E+13		3.1/0E+10	0.99807	0.00193
	125.0	6.6920	18,4030	7.769E+12		2.416E+10	0.99690	0.00310
	130.0	6.6920	10.4030	3.000E+12		1.0410+10	0.99502	0.00498
	140.0	6.6920	10.4030	0.2505+11		1.403E+10	0.99202	0.00790
	140.0	6 6920	18 4030	3 912F±11		9 149E±09	0.90722	0.01270
	150.0	6 6920	18 4030	1.853E+11		6 210E+09	0.96758	0.02040
	155.0	6 6920	18 4030	8 779E+10		4 733E+09	0.94885	0.05115
	160.0	6,6920	18,4030	4.159E+10		3.607E+09	0.92019	0.07981
	165.0	6.6920	18,4030	1.970E+10		2.749E+09	0.87756	0.12244
	170.0	6.6920	18.4030	9.332E+09		2.095E+09	0.81669	0.18331
	175.0	6.6920	18.4030	4.421E+09		1.596E+09	0.73470	0.26530
e	180.0	6.6920	18.4030	2.094E+09		1.217E+09	0.63254	0.36746
-	185.0	6.6920	18.4030	9.920E+08		9.271E+08	0.51691	0.48309
	190.0	6.6920	18.4030	4.699E+08		7.065E+08	0.39944	0.60056
	195.0	6.6920	18.4030	2.226E+08		5.384E+08	0.29250	0.70750
	200.0	6.6920	18.4030	1.054E+08		4.103E+08	0.20445	0.79555
	205.0	6.6920	18.4030	4.995E+07		3.127E+08	0.13774	0.86226
	210.0	6.6920	18,4030	2.366E+07		2.383E+08	0.09033	0.90967

6.6920 18.4030

1.121E+07

215.0

1.816E+08 0.05813 0.94187

c. On Venus' nightside temperatures can reach 200 K. What are the CO₂ and O mixing ratios at 200 km on Venus' nightside? At which altitude are both gases equally abundant?

d. Compare your results from (c) with those from (a) and (b) and briefly discuss your findings.

e. What would happen, qualitatively, to the mixing ratios at 200 km if vigorous mixing took place in Venus' atmosphere, possibly due to waves, and the homopause moved to a higher altitude?

Basic quantities							
T=	200.0000	К					
X10=	0.0020						
X20=	0.9980						
m1=	16.0000	amu					
m2=	44.0000	amu					
Grav=	8.4700	m/s2					
z0 =	120.0000	km					
ztop =	160.0000	km					
delta_z=	5.0000	km					
R=	8313.2530						
CO2 =	1.64E+13	cm-3					
O =	3.17E+10	cm-3					
BZ =	1.38E-23	[S.I.]					
Z H	ICO2	но	CO2				
120.0	4.4613	12.2687	1.				
125.0	4.4613	12.2687	5.				
130.0	4.4613	12.2687	1.				
135.0	4.4613	12.2687	5.				
1/10 0	4 4613	12 2697	1				

120.0	4.4613 12.2687	1.640E+13	3.170E+10 0.99807 0.00193
125.0	4.4613 12.2687	5.347E+12	2.109E+10 0.99607 0.00393
130.0	4.4613 12.2687	1.743E+12	1.403E+10 0.99202 0.00798
135.0	4.4613 12.2687	5.684E+11	9.334E+09 0.98384 0.01616
140.0	4.4613 12.2687	1.853E+11	6.210E+09 0.96758 0.03242
145.0	4.4613 12.2687	6.042E+10	4.131E+09 0.93600 0.06400
150.0	4.4613 12.2687	1.970E+10	2.749E+09 0.87756 0.12244
155.0	4.4613 12.2687	6.423E+09	1.829E+09 0.77839 0.22161
160.0	4.4613 12.2687	2.094E+09	1.217E+09 0.63254 0.36746
165.0	4.4613 12.2687	6.827E+08	8.093E+08 0.45759 0.54241
170.0	4.4613 12.2687	2.226E+08	5.384E+08 0.29250 0.70750
175.0	4.4613 12.2687	7.258E+07	3.582E+08 0.16848 0.83152
180.0	4.4613 12.2687	2.366E+07	2.383E+08 0.09033 0.90967
185.0	4.4613 12.2687	7.715E+06	1.585E+08 0.04640 0.95360
190.0	4.4613 12.2687	2.515E+06	1.055E+08 0.02329 0.97671
195.0	4.4613 12.2687	8.201E+05	7.017E+07 0.01155 0.98845
200.0	4.4613 12.2687	2.674E+05	4.668E+07 0.00569 0.99431
205.0	4.4613 12.2687	8.718E+04	3.106E+07 0.00280 0.99720
210.0	4.4613 12.2687	2.842E+04	2.066E+07 0.00137 0.99863
215.0	4.4613 12.2687	9.267E+03	1.375E+07 0.00067 0.99933

0

X(CO2) X(O)