Atmospheres in the solar system

Ingo Mueller-Wodarg

What is an atmosphere?

- An atmosphere is a gas layer surrounding a planet
- Gravitational energy competes against escape processes

$$F_{esc} = \frac{n r}{2\sqrt{\pi}} \cdot \left(\frac{2 k T}{m}\right)^{\frac{1}{2}} \cdot (\lambda + 1) e^{-\lambda} \qquad \text{Jeans escape flux}$$

$$\lambda = \frac{gravitational \ potential \ energy}{random \ kinetic \ energy} = \frac{r_{exobase}}{H} \qquad \begin{array}{l} \text{Lambda parameter} \\ \text{indicates how transient} \\ \text{an atmosphere is} \end{array}$$

Permanent atmospheres

	Venus	Earth	Mars	Jupiter	Saturn	Titan	Uranus	Neptune	Triton	Pluto
λ	1600	1100	490	2300	1300	68	200	450	84	21

Transient (non-permanent) atmospheres

	Mercury	Moon	Callisto	Ganymede	Europa	Io	Comets
λ	<10	<10	<10	<10	8	9	<10

Atmospheres in the solar system

Ingo Mueller-Wodarg

Thermal structure

The Earth's atmosphere is vertically subdivided into different regions/layers:

Earth and other planets

Ingo Mueller-Wodarg

Hydrostatic behaviour The pressure is defined as the weight (per surface area) of the atmosphere above: Z $p(z_0) = \frac{F}{A} = \int_{z=z}^{\infty} \rho(z) \cdot g(z) dz$ and the change or pressure with height is given by: Hydrostatic $dp = -\rho(z) \cdot g(z)dz$ equation

Pressure decreases with altitude since the weight of the atmosphere above becomes smaller for increasing height.

Part 1: Composition of atmospheres

From the ideal gas law:
$$p = n k T$$

and: $\frac{dp}{dz} = -\rho \cdot g = -m \cdot n \cdot g$
 $\frac{dp}{dz} = -p \cdot g = -m \cdot n \cdot g$
 $\frac{dp}{dz} = \frac{m g}{kT} \cdot p = -\frac{1}{H} \cdot p$
where: $H = \frac{kT}{mg}$
 $\frac{dp}{dz} = p(z_0) e^{-\int_{z_0}^{z} \frac{dz'}{H}}$

So, when moving up in altitude by one scale height, pressure decreases by a factor of $1/e \sim 0.37$.

Ingo Mueller-Wodarg

8

The same applies to number densities:

$$n=rac{p}{k\,T}$$
 , so: $n(z)=n(z_0)\left(rac{T(z_0)}{T(z)}
ight)\,e^{-\int_{z_0}^z rac{dz'}{H}}$

Gases below the homopause (near 105 km on Earth) are well mixed due to small scale turbulence and larger scale winds, while above the homopause they diffusively separate

In the heterosphere gases distribute vertically according to their individual scale heights

$$H_i(z) = \frac{k T(z)}{m_i g(z)}$$

Ingo Mueller-Wodarg

Venus

Ingo Mueller-Wodarg

CU/LASP • GSFC • UCB/SSL • LM • JPL

Mahaffy et al. (2015)

Ingo Mueller-Wodarg

Titan

Ingo Mueller-Wodarg

13

Part 2: Energetics of atmospheres

Possible energy sources

Solar radiation heating

 Magnetosphere - atmosphere coupling: Joule heating & particle precipitation heating

• Upward propagating waves from below

Possible energy sources (1)

Ingo Mueller-Wodarg

Key chemistry in Earth's thermosphere

- $O_2 + hv \longrightarrow O(^3D) + O(^1D)$
- $O_3 + hv \longrightarrow O_2 + O$
- $H_2O + hv \rightarrow H + OH$
- $NO + hv \rightarrow N(4S) + O$
- $O + O + M \longrightarrow$
- $O + O_3 \longrightarrow$
- $O + OH \rightarrow$
- $N(^{2}D) + O_{2} \rightarrow N(^{4}C) + O_{2}$
- $\begin{array}{ll} N(^{4}S) + O_{2} & \rightarrow \\ N(^{4}S) + NO & \rightarrow \end{array}$

- $O_2 + M + 5.12 \text{ eV}$ $O_2 + O + 4.06 \text{ eV}$
- $O_2 + H + 0.72 \text{ eV}$
- NO + O + 1.84 eV
- NO + O + 1.4 eV $N_2 + O + 2.68 eV$

In essence, photon energy from the Sun is transformed into thermal energy via chemical reactions.

Height

0

18

Atmospheric heating

Spectral regions of photochemical importance in the atmosphere

Wavelength	Atmospheric absorbers	
121.6 nm	Solar Lyman α line, absorbed by O ₂ in the meso-	1
	sphere; no absorption by O_3	
100 to 175 nm	O_2 Schumann Runge continuum. Absorption by	1
	O_2 in the thermosphere. Can be neglected in the	
	mesosphere and stratosphere.	
175 to 200 nm	O_2 Schumann Runge bands. Absorption by O_2 in]
	the mesosphere and upper stratosphere. Effect of	200
	O_3 can be neglected in the mesosphere, but is im-	
	portant in the stratosphere.	
200 to 242 nm	O ₂ Herzberg continuum. Absorption by O ₂ in the	150
	stratosphere and weak absorption in the meso-	
	sphere. Absorption by the O ₃ Hartley band is also	
	important; both must be considered.	E 100
242 to 310 nm	O_3 Hartley band. Absorption by O_3 in the strato-	Ы
	sphere leading to the formation of $O(^{1}D)$.	III
310 to 400 nm	O_3 Huggins bands. Absorption by O_3 in the stra-	
	to sphere and troposphere leads to the formation of $\alpha(3n)$	
	0(°P).	
400 to 850 nm	O_3 Chappuis bands. Absorption by O_3 in the tro-	
	posphere induces photodissociation even at the sur- face.	

Ingo Mueller-Wodarg

Possible energy sources (2)

• Magnetosphere - atmosphere coupling: Joule heating

Angular momentum transfer from atmosphere to magnetosphere

Angular momentum Reduced in atmosphere

Energetic particle precipitation

- Magnetosphere processes also accelerate plasma, causing suprathermal electrons & protons to enter the upper atmosphere
- Since these travel along magnetic field lines, they enter the atmosphere at polar latitudes
- This excites atmospheric molecules and causes auroral emissions

Aurora: a TV screen of magnetosphere

Possible energy sources (3)

• Upward propagating waves from below

Earth

Upward propagating waves break and dissipate, releasing energy and momentum

Atmospheric waves also accelerate the background winds in the atmosphere

Zonally averaged meridional winds at 70°W and 18:00 UT for quiet-time conditions with (right) and without (left) tidal oscillations. Contours are positive southward.

Note how dissipating atmospheric waves dominate the low- to mid latitude thermosphere! 24 PG Lecture Nov 2017

Temperatures in solar system

Temperatures in solar system

Planet	Solar EUV heating rate	Joule heating rate
Earth	500 x 10 ⁹ W	80 x 10 ⁹ W
Jupiter	800 x 10 ⁹ W	100,000 x 10 ⁹ W
Saturn	200 x 10 ⁹ W	2,000 x 10 ⁹ W

So, is Joule heating our "missing energy" on Jupiter and Saturn?

And/or to atmospheric waves play a role? (remember that they are one of 3 possible energy sources!)

Take-home messages

- Exploring atmospheres on different planets helps us determine the universality of physical processes, improving our understanding of Earth as well
- A basic understanding of terrestrial planets
 has evolved
- The outer solar system poses difficulties: Sun is no longer the elephant in the room and energetics become more messy.