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The (complex) composition-climate system:
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Recent advances

Models: « Chemistry-climate models are climate models with
atmospheric composition (gases, aerosols) “on top”.

* They have advanced a lot in the last 2-3 decades, but they can
Improve even more.

Satellites: Observations of atmospheric constituents have
produced a wealth of data (e.g. NASA A-Train), especially in the last
decade.
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Mass balance (continuity) equation for a
gas/aerosol constituent
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time

Change of
concentration of
constituent with
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due to transport
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ection). U is the

wind velocity
vector (m s1).

_ P+L (local terms)
conve&lon
advection Chemistry, advection
i  ——

aerosol microphysics.
missions, deposition

Flux divergence Local production
due to molecular term: Emission,
diffusion. Disthe  chemical
molecular production,
diffusion microphysics
coefficient (m?st). (in kg m3s?).

Small in trop/strat Local loss

A — —V ® (nU) 4 Dv//n_l_ P . L \ term: Chemical

loss, wet and
T dry deposition,
microphysics
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 This equation is for number
concentration, but equivalent
equations can be written for mass,
mass concentration etc.



Discretisation of mass balance equation in space
(useful for global modelling)

* First order PDE in space and time. Need initial concentration and
boundary conditions (i.e. fluxes at surface, top-of-the-atmosphere).

* Global models have 3D domain with finite number of gridboxes.
Typical global models: horizontal resolution of ~100km, vertical of
~1km -> total of ~10° gridboxes. Equation then solved for all
gridboxes.

* Chemical transport models (CTMSs):
| use external meteorological data as
Input; simulate the aerosols/gases.

* General circulation models (GCMs):
simulate their own meteorology; use
external aerosols gas forcings.

= Composition-climate models (CCMs):
www.sciencemuseum.org.uk O boOth.



Discretisation of mass balance equation in time

e Split the equation into contributions from transport and local terms:

on on on Emissions, chemistry,
- = | + | — deposition etc (P-L).
ot ot TRANSPORT ot LOCAL If several species,
then for species i we
have P(n)-L(n),
where n a vector of
concentrations of all
species on which i

depends.

Advection+conve
ction = —Ve(nU)

* Use a transport operator and a local operator to decouple the two
terms in finite difference form (assumed TRA and LOC are decoupled

- can swap to test!):
n(t, + At) = (LOC) e (TRA)(N(t,))

* Can split further (TRAto TRA,, TRAy, TRA,, or LOC to chemistry,
microphysics, emissions, deposition operators).



Photolysis rate calculation

* For a given molecule A being photolyzed (A+hv == B+C):
JAT) = [ 04(A) p4(A) F(A)dA  (s7)

- a,(A) : Absorption cross section (probability of a photon to be
absorbed).

> @ (A) : Quantum yield (number of molecules photolyzed per
photon absorbed).

> F(A) :Solar actinic flux (radiative flux from all directions).

 When photolysis rate multiplied by concentration -> gives loss
rate of constituent (mass loss per unit time).

* Generally rate of reaction: r = k(T)[A]"[B]", (k=reaction rate
constant).



Lifetimes of constituents

« The rate at which a chemical species A (with concentration
[A]) Is lost from the atmosphere is characterised by its e-folding
lifetime T1,.

« Itis the time required by a gas to decrease to 1/e its original
concentration due to chemical reaction. Lifetimes are
iIndependent of emission/production rates.

1 [A]
Ja d[A]/dt

* If concentrations of a species are determined by multiple
processes (1, 2,..., n), the overall lifetime is:

1
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* For example, for photolysis reaction: 7A =

A =




Simple one-box models (0-dimensional)

* Helpful for quickly testing hypotheses. Also OK for modelling
WMGHGSs (not very inhomogeneous in space).

* Consider gas (no microphysics) with mass m:

Fin (inflow) Chemical production

loss (P+L)
emissions (E),
deposition (D)

F..: (outflow)
_

%—T = sources—» sinks=F, +E+P—-F,,—L-D

m

—_— m —_—
Zsinks F +L+D

out

Overall lifetime: 7

Overall loss rate constant (in s1): k =1/t =k

out T k|_ + kD (note: if the
only loss process is photolysis, then k, =J).



Evolution of constituent mass in a box model

* Assume we have a constant known source S (emission, chemical,
microphysical) and constant 15t order loss L (loss rate constant = k).

am
dt

e Steady state when
dm/dt=0, i.e.
abundance does not
change with time.

e Takes about 2-3
lifetimes (z) to reach
“quasi steady-state”,
though it depends on
the initial conditions.

m
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Simple two-box model

* Useful if we have two distinct environments interacting
(e.g. boundary layer & free troposphere, Europe and the Sahara etc).

Chemical production Fio Chemical production
Ios; (!31+L1) . " [ m2 loss (P,+L,)
emissions (E,), F,, emissions (E2),

deposition _(D1)I

deposition (D2)

dm,
dt

We may be given that some loss process is first order (e.g. the left to
right transport flux). Then we can express F, = Kg;,M;.

=E,+P-L -D,-F,+F, (and similar for box 2)

Note that if we are told that the system has reached steady state, we
have two simple algebraic equations.



Back to large-scale models

* First order PDE in space and time. Need initial concentration and
boundary conditions (i.e. fluxes at surface, top-of-the-atmosphere).

* Global models have 3D domain with finite number of gridboxes.
Typical global models: horizontal resolution of ~100km, vertical of
~1km -> total of ~10° gridboxes. Equation then solved for all
gridboxes.
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Back to large-scale models: Thermodynamic
energy equation

/_8’[ =—V/(UE)—|—,0A T ’m
Change of _ \
: Flux divergence
energy density _
e for energy Heat production and loss terms

with timein a ) : . :
ridbox density due to (p4 is the density of air, and 9,/T,
g. 3.1 transport. U is are the virtual potential
(inJ m=3s1). _ _ .

the wind velocity temperature and virtual

vector (m s1). temperature).

Includes diabatic heating/cooling
by greenhouse gases/aerosols.

* It is also solved for each timestep in a GCM or a CCM. In the CCM
‘online” simulated gases/aerosols will be used for diabatic heating

« Simulated heating rates and temperatures are then fed back to the
chemistry/aerosol “scheme” to influence atmospheric composition.



Conservation of momentum (Navier Stokes
equation)

—=—(UeV)U +vV2U—V—+g

Fa &y

Change in air Advection term Changes due to

velocity in a for U. diffusion. Pressure-gradient & gravity
gridbox terms, exerting local
(in m s2). accelerations.

« Familiar? Analogous to the mass balance equation.

» Heating/cooling rates calculated from thermodynamic balance
(previous) affect pressures, which are fed into this part of the model
(dynamics) to calculate changes in wind velocities (i.e. circulation).

» Then circulation changes, together with other resulting meteorological
changes that occur during the timestep, feed into the chemistry/aerosol
scheme to affect constituent transport, reaction rates, wet deposition etc.

« Everything coupled (in a CCM)!



Radiative transfer

dL, = —L,p*ds + ], f*tds

Spectral Extinction \

radiance (W m™ coefficient (m) Source function
sr'l(freq)?)

Also needs to be discretized — in frequency and direction as well as
space and time

One of the source terms (dQ) in thermodynamic equation — typically

represents one of the most computationally intensive components of
a climate model



Parameterisations for sub-grid processes

* As well as explicitly solving PDESs in discretised space/time, need to
parameterise effects of un-resolved processes
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Examples of processes
that might be
parameterised.:

« Convection (O(10m))

« Cloud microphysics
(O(10°m))

« Gravity waves
(O(100m))

Snowl/ice cover
Wildfires
Radiation



(zas processes

Emission

Photochemistry
Heterogeneous chemistry
Aerosol nucleation
Condensation/evaporation
Dissolution/evaporation
Dry deposition

Radiative processes

¢ ~

Solar and infrared radiation
Gas, aerosol, cloud absorption
Gas, acrosol, cloud scattering
Heating rates

Actinic fluxes

Visibility

k’Washﬂut J

Aerosol processes

(" Emission N
Nucleation

Aerosol-aerosol coagulation
Aerosol-hydrometeor coagulation
Condensation/evaporation
Dissolution/evaporation
Equilibrium chemistry

Aqueous chemistry

Heterogeneous chemistry

kAIhedD )

Meteorological processes
;- ™
Air temperature
Air density
Air pressure
Wind speed and direction
Turbulence

Dry deposition/sedimentation
\._ Rainout/washout J

Cloud processes

4 Condensation/fice deposition N
Homogeneous, contact freezing
Melting/evaporation/sublimation
Hydrometeor—hydrometeor coag.
Aerosol-hydrometeor coagulation
Gas dissolution/aqueous chemistry
Precipitation, rainout, washout

\_ Lightning Y,

kWater vapor J

Transport processes

Emission

Gas, aerosol, cloud transport in air
Gas, aerosol transport in clouds
Dry deposition/sedimentation
Rainout/washout

Surface processes

Soil, water, sea ice, snow, road,

roof, vegetation temperatures
Surface energy, moisture fluxes
Ocean dynamics

Atmospheric
processes
simulated in a
CCM

Surface processes
not strictly
atmospheric, but can
iInfluence
atmosphere. In
Earth system
models, the
biosphere is
simulated
simultaneously, i.e.

/ vegetation type,

growth, and
emissions depend
on simulated

climate.
Jacobson (2005)



& swnlo toa

« swnZo_toa_hemis
@ swn_grnd_clrsky
« swn_grnd_clrsky_hemis
« swncls

« swncls_hemis

« swndlt

« swnclt_hemis

& SWU_oice

« 5wu_oice_hemis
@ swup_toa_clrsky
« swup_toa_clrsky_hemis
@ 1 300

« t 300 _hemis

@ 1500

« t 500 hemis

@ t 700

« t 700 _hemis

@ t_850

« t 850 hemis

w Tatm

« Tatm_hemis

& tausmag

« tausmag_hemis
@ tauus

& tauus_hemis

w tauvs

« tauvs_hemis

« TEMPSI

= = I EmE W

SW TOA N20 RADIATIVE FORCING
swn2o_toa_hemis

CLR S5KY NET SOLAR RADIATION, SRF
swn_grnd_clrsky_hemis

SW CLR-5KY MET RADIATION, SURFA...
swncls_hemis

5W CLR-5KY NET RADIATION TOA ME...

swnclt_hemis

SEA ICE UPWARD SHORTWAVE RADIA...

swuU_oice_hemis

CLR S5KY OUT SOLAR RADIATION, TOA
swup_toa_clrsky_hemis

TEMPERATURE AT 300mb

t_ 300 _hemis

TEMPERATURE AT 500mb

t 500 _hemis

TEMPERATURE AT 700mb

t 700 _hemis

TEMPERATURE AT 850mb

t 850 _hemis

ATMOSPHERIC TEMPERATURE
Tatm_hemis

MAG OF MOMENTUM SURFACE DRAG
tausmag_hemis

U COMPON OF MOMENTUM 5RF DRAG
tauus_hemis

V COMPON OF MOMENTUM SRF DRAG
tauvs_hemis

SEA ICE TEMPERATURE (MASS LAYER 2)
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Example:
Screenshot
of NASA
GISS
model
output



How to use a model

1 Improve model, characterize its error
Define Design model; make Design
problem assumptions r,1eeded observational Evaluate
of interest = mpt . — - | model with
dits to simplify equations system to test observations
and | and make them solvable model
scale
Apply model:
— make hypotheses,
P redictions http://acmg.seas.harvard.edu/education/
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Need to be in constant dialogue.



Lagrangian model: Follow air parcel moving

with wind
Cx(%, 1) In the moving box (C is the concentration),
wind ] dCX—E+P—L—D
CX(XO’ to) dt

...no transport terms! (they’re implicit in the trajectory)

Application to the chemical evolution of an isolated pollution plume:
WIND dilution

dilution 4
> Cxbp TN

- -

IO+AI IO+ZAI

http://acmg.seas.harvard.edu/education/

dCX:E+P—L—D—k (CX_CX,b)

dilution
t

In pollution plume,



Even indoor air pollution models!

* [n many ways
similar to what we
saw earlier.

* Atmospheric
models share
several of their

principles/characteri
Levels of outdoor-PM and its distributions -
Penetration loss of outdoor-PM concentrations stics, from the (very)
Building characteristics local to the global
Outdoor-PM indoors gain through natural ventilation and infiltration
Outdoor clean air through natural ventilation scale.
Levels of indoor-PM from indoor sources
Deposition loss and re-suspension of PM
Indoor-PM concentrations loss and gain through other rooms and/or indoor
passageways
Human/animal presence and activity
Indoor-PM loss through natural ventilation and exfiltration
Interaction of and between poliutants (i.e. formation, phase change,
coaguiation)

22D ONOOAWN=

ot



Summary

« Showed and discussed the mass balance
equation for atmospheric constituents in a model.

* Discussed one-box and two-box models.
* Presented basic thermodynamic and dynamic
equations in models, and mentioned their

Interactions.

« Gave a summary of how models are typically
used.

« Briefly mentioned Lagrangian and indoor air
guality models.



