The global carbon cycle Heather Graven

Mauna Loa Observatory, Hawaii Monthly Average Carbon Dioxide Concentration

Atmospheric measurements are conducted all

over the world

GHG emissions have been growing rapidly

CO₂ emissions from fossil fuel combustion for energy are the largest source of GHGs by far

^{*} Based on Annex I data for 2011; without Land Use, Land-Use Change and Forestry, and with Solvent Use included in Industrial Processes and "other" included with waste.

Source: UNFCCC.

Units

1 Gigatonne (Gt) = 1 billion tonnes =
$$1 \times 10^{15}$$
 g

1 ppm
$$CO_2 = 7.8$$
 Gt $CO_2 = 2.1$ Gt C

Examples

Emissions from burning 1 litre of petrol: 2.3 kg CO₂

Mass of a car: 1000 kg = 1 tonne

Global per capita fossil fuel emissions in 2013: 5 tonnes CO₂ per person

UK per capita household waste in 2012-13: 420 kg per person

Our energy system is heavily reliant on fossil fuels

Renewables like solar and wind energy have been growing rapidly but they are still a tiny fraction of total energy supply

Figure 1: 2014 fuel shares in world total primary energy supply

Figure 3: Annual growth rates of world renewables supply from 1990 to 2014

IEA Renewables Information (2016 edition)

Estimates of fossil fuel CO₂ emissions are based on accounting of activities

according to e.g. IPCC guidelines

Carbon Content Combustion \times 44 g CO₂ $(g C / g fuel) \times Efficiency (\%) \times \frac{44 g CO₂}{12 g C}$ Energy Density (kWh / g fuel)

Full life-cycle Carbon Intensity also depends on mining, transport, transmission, other GHGs, etc

Indicative Carbon Intensity by Fuel

Fuel	gCO ₂ kWh ⁻¹
Coal*	800 - 1000
Peat	740
Petrol / Diesel / Fuel Oil	700
Kerosene	640
Natural Gas*	400

^{*} Main fossil fuels used for electricity

Carbon Intensity of electricity by country, 2009-11

Country	gCO ₂ kWh ⁻¹
China	780
US	500
UK	450
France	70
Norway	10

IEA, 2013

Atmospheric CO₂ concentration has varied over Earth's history

Atmospheric CO₂ remains elevated for millennia because some removal processes are slow

Atmospheric CO₂ integrates sources and sinks

Interhemispheric gradient of atmospheric CO₂ is less than expected from emissions due to net CO₂ uptake by the oceans and by land plants in the Northern Hemisphere

The spatial distribution of CO₂ is evolving due to CO₂ sources and sinks

Atmospheric CO₂ integrates net sources and sinks

$$\frac{dA}{dt} = F + L - O - B$$

Atmospheric CO₂ integrates net sources and sinks

$$\frac{dA}{dt} = F + L - O - B$$

Airborne fraction: 45%

Atmospheric CO₂ integrates net sources and sinks

 $\frac{dA}{dt} = F + L - O - B$

Sinks of CO₂ in the land and ocean have been growing consistently with emissions

Airborne fraction: 45%

Total uptake 5.0 ± 0.9 PgC/yr in 2012, doubled since 1960

Ballantyne et al. 2012

Global Carbon Budget (2005-2014 average)

Land use is dominated by tropical deforestation emissions, but net uptake in some places

FIGURE 4
Annual change in forest area by region, 1990–2010

Observations of terrestrial fluxes and biomass

CO₂ exchange with the terrestrial biosphere incorporates various processes and timescales

Walker and Steffen 1997; IPCC 2013 Seasonal and interannual variations in biosphere exchange are visible in atmospheric CO₂

El Niño causes strong release from the biosphere during warm and dry conditions in the tropics

Scripps CO₂ Program; NASA; CDIAC; Graven 2016

Oceanic CO₂ and pH measurements use titrations and more advanced technologies

Images courtesy NOAA, NASA

Measuring conductivity, temperature, and depth (CTD) and sampling ocean water with a Rosette

Video: https://www.youtube.com/watch?v=7N2UsPDczTw

CO₂ in the ocean takes the form of several carbonate species

Dissolved Inorganic Carbon is concentrated in the deep ocean because of the solubility and biological pumps

CO₂ solubility in the ocean is mainly a function of TCO₂ and Temperature

Anthropogenic CO₂ uptake is driven by dissolution and ocean circulation

Observations show surface ocean CO₂ and H⁺ are rising, and pH is decreasing: pH = -log[H⁺]

Ocean acidification impacts on marine species

Hard corals largely composed of calcium carbonate; Soft corals contain calcium carbonate blended with protein

Calcifying phytoplankton

Basal resource in virtually all marine food webs

Vital source of energy for higher trophic levels

From E. O'Gorman

Carbon cycle processes are one of the main sources of uncertainty in projections of climate change

ESM RCP 8.5 Atmospheric CO₂

Hoffman et al. (2014)

Atmospheric methane

- After carbon dioxide (CO₂), methane (CH₄) is the second most important greenhouse gas contributing to human-induced climate change.
- For a time horizon of 100 years, CH₄ has a Global Warming Potential 28 times larger than CO₂.
- Methane is responsible for 20% of the global warming produced by all greenhouse gases so far.
- The concentration of CH_4 in the atmosphere is 150% above pre-industrial levels (cf. 1750).
- The atmospheric life time of CH₄ is 9±2 years, making it a good target for climate change mitigation

- Methane also contributes to tropospheric production of ozone, a pollutant that harms human health and ecosystems.
- Methane also leads to production of water vapor in the stratosphere by chemical reactions, enhancing global warming.

Global methane emissions 2003-2012

Bottom-up budget

Process models, inventories, data driven methods
734 TgCH₄/yr [596-884]

Mean [min-max range %]

Top-down budget

Atmospheric inversions

559 TgCH₄/yr [540-568]

Natural wetlands	1
Agriculture & waste Rice	1

Enteric ferm & manure Landfills & waste

Fossil fuel use Coal Gas & oil

Biomass/biofuel burning

Other natural emissions

Fresh waters
Wild animals
Wild fires
Termites
Geological
Oceans
Permafrost

185 [40%]
195 [15%]
30 [10%]
106 [20%]
59 [20%]

121 [20%]42 [80%]
79 [10%]

30 [30%]

199 [90%]

122 [100%] 10 [100%]

3 [100%] 9 [120%] 40 [50%]

ans 3 [100%] rost 1 [100%]

 $(TgCH_4/yr)$

Mean [uncertainty= min-max range %]

Source: Saunois et al. 2016, ESSD

CH₄ concentration stopped increasing for several years in the 2000s, then resumed

Hypotheses:

- Agricultural emissions (Schaefer et al. 2016)
- Fossil emissions from US fracking (Turner et al. 2016)
- Tropical wetland emissions (Nisbet et al. 2016)
- Variation in atmospheric OH and thus CH₄ removal by OH (Turner et al. 2017; Rigby et al. 2017), perhaps related to CO emissions (Gaubert et al. 2017)

Major research topics

- Where and how is anthropogenic CO₂ being taken up by the ocean and terrestrial biosphere?
- How will CO₂ and CH₄ exchanges be influenced by future emissions and climate change?
- How are marine organisms and food webs responding to ocean acidification, climate change, deoxygenation?
- How are terrestrial ecosystems responding to changing climate, nutrients, air pollution?
- What are the sources of CH_4 to the atmosphere and what caused the variation in CH_4 growth rate in the 2000s?

Other reading

Natalie Angier, Too much of a good thing, NYT, Sept. 22, 2014 http://www.nytimes.com/2014/09/23/science/carbon-dioxide-building-block-of-life-best-in-moderation.html? r=1

Heather Graven, The carbon cycle in a changing climate, *Physics Today*. http://physicstoday.scitation.org/doi/10.1063/PT.3.3365

The Global Carbon Project http://www.globalcarbonproject.org/

IPCC AR5 Chapter 6: Carbon and Other Biogeochemical Cycles http://www.ipcc.ch/report/ar5/wg1/

David Archer, *The Global Carbon Cycle*, Princeton Primers in Climate, Princeton University Press,

Chapter 1: http://press.princeton.edu/chapters/s9379.pdf

Practice questions

- Write down and explain the key reactions in the global carbon cycle.
- 2. What is the difference between gross and net fluxes of carbon? Give some examples of how net fluxes change if they are integrated over different timescales.
- 3. What is the definition of the airborne fraction and what is its value? In one future scenario, CO_2 emissions will increase to 20 PgC/yr by 2050. What would the atmospheric growth rate of CO_2 be in 2050 if the airborne fraction remained constant? What are some potential changes to ocean and terrestrial biosphere processes that could cause the airborne fraction to increase?