The global carbon cycle
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Atmospheric measurements are conducted all
over the world
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GHG emissions have been growing rapidly

CO, emissions from fossil fuel combustion for energy
are the largest source of GHGs by far

Anthropogenic GHG Emissions

Waste 3%

Agriculture
8%

Industrial

processes
6%

CH, 6%
N0 1%

* Based on Annex | data for 2011; without Land Use, Land-Use
Change and Forestry, and with Solvent Use included in
Industrial Processes and “other” included with waste.

Source: UNFCCC.
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Units

1 Gigatonne (Gt) = 1 billion tonnes =1 X 10%> g

1ppmCO,=7.8GtCO,=2.1GtC

Examples

Emissions from burning 1 litre of petrol: 2.3 kg CO,

Mass of a car: 1000 kg = 1 tonne

Global per capita fossil fuel emissions in 2013: 5 tonnes CO, per person

UK per capita household waste in 2012-13: 420 kg per person



Our energy system is heavily reliant on fossil fuels

Renewables like solar and wind energy have been growing
rapidly but they are still a tiny fraction of total energy supply

Figure 1: 2014 fuel shares in
world total primary energy supply
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Figure 3: Annual growth rates of
world renewables supply from 1990 to 2014
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Estimates of fossil fuel CO, emissions
are based on accounting of activities
according to e.g.
IPCC guidelines

Activity Emission

Emissions = X
Data Factor

Carbon Content Combustion 44 g CO,

(g C / g fuel) X Efficiency (%) X 12gcC

Cl =

Energy Density
(kWh / g fuel)

Full life-cycle Carbon Intensity also depends on
mining, transport, transmission, other GHGs, etc

IEA, 2013

Indicative Carbon Intensity

by Fuel
Fuel ] g0, i

Coal* 800 - 1000
Peat 740

Petrol / Diesel / 700

Fuel Oil

Kerosene 640

Natural Gas* 400

* Main fossil fuels used for electricity

Carbon Intensity of electricity
by country, 2009-11

China 780
US 500
UK 450
France 70
Norway 10



CO, (parts per million, ppm)

Atmospheric CO, concentration has varied over
Earth’s history
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Fraction of emitted CO, remaining

Atmospheric CO, remains elevated for millennia
because some removal processes are slow

in the atmosphere
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Atmospheric GD2 (ppm)

Atmospheric CO, integrates sources and sinks

Interhemispheric gradient of atmospheric CO, is less than expected from
emissions due to net CO, uptake by the oceans and by land plants in the
Northern Hemisphere
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The spatial distribution of CO, is evolving due
to CO, sources and sinks
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Atmospheric CO, integrates net sources and

sinks
gé:F+L—O—B

dt
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Atmospheric CO, integrates net sources and

sinks
gé:F+L—O—B
dt
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Atmospheric CO, integrates net sources and
sinks dA
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Fossil Fuels

Land Use

Global Carbon Budget
(2005-2014 average)

33.0*+1.8 GtCO,/yr 91%

4+ 1.8 GCO,/yr 9%

16.0+0.4 GtCO,/yr 44%

Atmosphere

Land Biosphere

9.5+1.8 GtCO,/yr 26%

Oceans




Land use is dominated by tropical deforestation
emissions, but net uptake in some places

FIGURE 4
Annual change in forest area by region, 1990-2010
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Global Forest Resources Assessment, FAO, 2010



Observations of terrestrial fluxes and biomass

Eddy Flux |
Towers




CO, exchange with the terrestrial biosphere
incorporates various processes and timescales

2

Plant Heterotrophic
GPP respiration respiration
(Litter, Dead
. trees)
Gross Primary NPP Medun-
Productivity h_Fh"t NEP| e,
120 PgC/yr e siaage
Net Primary
Productivity Net Ecosystem
60 PgC/yr Productivity
10 PgC/yr

Disturbance
(Fire, Harvest)

Lon
NEP Mg
c.arbon
storage
Net Biome
Productivity

Walker and
1.3 PgC/yr
-y Steffen 1997;

IPCC 2013



Seasonal and
interannual
variations in
biosphere exchange
are visible in
atmospheric CO,

El Niflo causes strong
release from the biosphere
during warm and dry
conditions in the tropics

Scripps CO, Program; NASA;
CDIAC; Graven 2016
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Oceanic CO, and
pH measurements
use titrations and
more advanced
technologies

Images courtesy NOAA, NASA



Measuring conductivity, temperature, and depth
(CTD) and sampling ocean water with a Rosette

Video: https://www.youtube.com/watch?v=7N2UsPDczTw




CO, in the ocean takes the form of several
carbonate species

Atmospheric Carbon Dioxide {>~
co,
Dissolved
carhon Dloxlde Carbonic Blcarhﬁlé%tg' lons
Acid -3
—> [HCO,] — +
Water Hydrogen lons
H*

+



Dissolved Inorganic Carbon is concentrated in
the deep ocean because of the solubility and

biological pumps
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Anthropogenic CO, uptake is driven by
dissolution and ocean circulation
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Observations show surface ocean CO, and H*
are rising, and pH is decreasing: pH = -log[H*]
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Ocean acidification impacts on marine species

Hard corals largely composed of
calcium carbonate; Soft corals contain
calcium carbonate blended with protein

Calcifying phytoplankton

Basal resource in virtually all
marine food webs

Vital source of energy for higher
trophic levels From E. O'Gorman




CO; (ppm)

Carbon cycle processes are one of the main sources
of uncertainty in projections of climate change
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crosacicarson  Atmospheric methane
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*  After carbon dioxide (CO,), methane (CH,) is 1800 i
: | Etheridge ef al,, JGR, 1996; 1998 © Antarctic ice |
the second most important greenhouse gas g0l MacFariing Meure et al. GRL, 2006 o Cape Grim )

contributing to human-induced climate | Updated 0 2012 §
change. 1400 - §
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warming produced by all greenhouse gases so 0 200 400
Year AD
far.
e Methane also contributes to tropospheric
* The concentration of CH, in the atmosphere production of ozone, a pollutant that harms
is 150% above pre-industrial levels (cf. 1750). human health and ecosystems.

Methane also leads to production of water
vapor in the stratosphere by chemical
reactions, enhancing global warming.

* The atmospheric life time of CH,is 9+2 years, J
making it a good target for climate change

mitigation

Sources : Saunois et al. 2016, ESDD; Kirschke et al. 2013, NatureGeo.; IPCC 2013 5AR; Voulgarakis et al., 2013



GLOBAL CARBON
PROJECT

Globa

methane emissions 2003-2012

[ Bottom-up budget ]

Process models, inventories,
data driven methods
734 TgCH,/yr [596-884]

Mean [min-max range %]

[ Top-down budget ]
Atmospheric inversions

559 TgCH,/yr [540-568]

Natural wetlands

Agriculture & waste
Rice

Enteric ferm & manure
Landfills & waste

Fossil fuel use
Coal
Gas & oil

Biomass/biofuel burning

Other natural emissions

Fresh waters
Wild animals
Wild fires
Termites
Geological
Oceans
Permafrost

185 [40%]

195 [15%]
30 [10%]
106 [20%]
59 [20%]

121 [20%]
42 [80%]
79 [10%]

30 [30%]

199 [90%]
122 [100%)]
10 [100%)]
3 [100%]

9 [120%)]
40 [50%)]
3 [100%)]

1 [100%]

(TgCH,/yr)

Mean [uncertainty=
min-max range %]

Source : Saunois et al. 2016, ESSD




CH, mole fraction (ppb)

CH, concentration stopped increasing for several years in the
2000s, then resumed

GLOBAL MONTHLY MEAN CH,

1900

1850 [
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1700 [

1650 [

1600

1
MNovember 2017

1980

1990 2000 2010
YEAR

2020

Hypotheses:

Agricultural emissions
(Schaefer et al. 2016)

Fossil emissions from US
fracking (Turner et al.
2016)

Tropical wetland emissions
(Nisbet et al. 2016)

Variation in atmospheric
OH and thus CH, removal
by OH (Turner et al. 2017,
Rigby et al. 2017), perhaps
related to CO emissions
(Gaubert et al. 2017)



Major research topics

* Where and how is anthropogenic CO, being taken up by the
ocean and terrestrial biosphere?

* How will CO, and CH, exchanges be influenced by future
emissions and climate change?

* How are marine organisms and food webs responding to
ocean acidification, climate change, deoxygenation?

 How are terrestrial ecosystems responding to changing
climate, nutrients, air pollution?

* What are the sources of CH, to the atmosphere and what
caused the variation in CH, growth rate in the 2000s?



Other reading

Natalie Angier, Too much of a good thing, NYT, Sept. 22, 2014
http://www.nytimes.com/2014/09/23/science/carbon-dioxide-building-block-
of-life-best-in-moderation.html? r=1

Heather Graven, The carbon cycle in a changing climate, Physics Today.
http://physicstoday.scitation.org/doi/10.1063/PT.3.3365

The Global Carbon Project http://www.globalcarbonproject.org/

IPCC AR5 Chapter 6: Carbon and Other Biogeochemical Cycles
http://www.ipcc.ch/report/ar5/wgl/

David Archer, The Global Carbon Cycle, Princeton Primers in Climate,
Princeton University Press,
Chapter 1: http://press.princeton.edu/chapters/s9379.pdf




Practice questions

1. Write down and explain the key reactions in the global carbon
cycle.

2. What is the difference between gross and net fluxes of carbon?
Give some examples of how net fluxes change if they are
integrated over different timescales.

3. What is the definition of the airborne fraction and what is its
value? In one future scenario, CO, emissions will increase to 20
PgC/yr by 2050. What would the atmospheric growth rate of CO,
be in 2050 if the airborne fraction remained constant? What are
some potential changes to ocean and terrestrial biosphere
processes that could cause the airborne fraction to increase?



