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Strong ties to other Titan science

* For Dynamics:
— Radiative heating and cooling by haze
— Provides clues to seasonal behavior

— Constrains and plays a role in General Circulation
Models and may be important for super-rotation

* For Chemistry

— A sink for photochemistry starting from the gas
phase

— A source of organics on the surface

* Profoundly affects surface visibility below 5
LLm



Components of Titan s Haze

Main and

detached haze. Winter polar vortex.
Hemispheric Complicated
contrast and structure and
altitude condensate
variations with formation.

different

seasonal

phase lags

Zonal structure.
Tilted from Titan
spin axis (Roman
et al., 2009)

Fine structure

Tropical haze band
de Kok et al. 2010
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Vertical Distribution



Occultation Results: UV (UVIS)
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FIG. 7.— Column density profile of spherical tholins with a radius of
rq = 12.5 nm retrieved from synthetic T41 I data. The input column density
profile is shown by the dotted lines.
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These imply unbelievable
radiative heating rates —
Roger Yelle will elaborate.




From CH, and N, to aerosols
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Occultation Results: Near — IR
(VIMS)
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Fig. 14. Number density profile for aggregate of 30,000 spheres. The three profile
were calculated using three values of the reference solar spectrum: Ig(A) (straight
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Vertical Profiles from the Descent
Imager and Spectral Radiometer

Aerosol Number Density vs. Altitude
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Optical Properties



The Haze is Highly Polarizing
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FIG. 3. Pioneer 11 and Voyager 2 polarization measurements of Titan compared with predictions for a plane-parallel, semi-infinite atmosphere
of type II particles having monomers with radius 0.06 m. In order to fit Titan’s geometric albedo the imaginary index of refraction of these particles
is 0.21, 0.085, 0.023, and 0.013 at wavelengths 2640, 4520, 6480, and 7500 A (continuous curves). The real index is close ta 1.7 (based on laboratory
work of Khare et af,, 1984). The models shown by the dashed curve at the two shortest wavelengths incorporate a second size mode of 0.03-um-
radius spheres (17% of the phase function is contributed by these particles in the UV, 4% in the blue). The dotted curve at 7500 A shows the
depolarizing influence of the surface when the atmosphere becomes less optically thick (optical depth 0.5) at 7500 A. Error bars are no larger than
the size of the dots.

From West and Smith, /carus 90, 330-333 (1991)



Max Pol

Blue Polarization from DISR

Maximum BluePolarization vs. Altitude
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Titan Reflectivity at 938 nm

Strong Forward Scattering is Apparent
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Phase Function, Blue Channel from
DISR

Phase Functions at491 nm

Monomer Radius (um)
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Aggregate Structures can be both Highly
Polarizing and Strongly Forward
Scattering
However, Compact Structures are not
Highly Polarizing
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Optical Depth from DISR

Optical Depths in Three Altitudes Regions
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Optica

| Depth from VIMS Solar Occ
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Spectral Slope

18 A. Bellucci et al. / Icarus
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Particle Single-Scatter Albedo

Single Scattering Albedos in Two Altitudes Regions
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Constraints on Composition

* Broad spectral characteristics: Strong
absorption at blue/UV wavelengths, little
absorption in the red, increasing absorption in
the near-IR, less absorption below 30 km

* C-H absorption feature seen in VIMS solar
occultation (Bellucci et al., 2009)

* Spectral features in the thermal-IR, especially
in the winter polar vortex — Carrie Anderson
will discuss this



Feature at 3.3 um

A. Bellucci et al. / Icarus 201 (2009) 198-216

359.83 km P= 3.06e-05 bar

1.0 1.5 20 25 3.0 3.5
257.76 km P= 2.33e—04 bar

1.0 1.5 2.0 25 30
164.14 km P= 1.76e—03 bar

“Under 480 km, the 3.3 um CH4 band is mixed with a large and deep additional
absorption. It corresponds to the C—H stretching mode of aliphatic hydrocarbon
chains attached to large organic molecules.” Bellucci et al., 2009
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Refractive Index from Rannou et al.

analysis of the VIMS Solar Occ
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Haze Microphysical Models

 Models try to account for
— Gas -> Particle conversion
— Growth from vapor
— Sticking and electric charge
— Size evolution
— Aggregation

— Sedimentation and (for 2-Dimensional models)
advection



Models with Aggregation

Cabane M, Chassefiere E, Israel G (1992) Formation and growth of photochemical
aerosols in Titan’ s atmosphere. Icarus 96, 176—189

Cabane M, Rannou P, Chassefiere E, Israel G (1993) Fractal aggregates in Titan’ s
atmosphere. Planet Space Sci 41, 257-26

Rannou P, Cabane M, Chassefiere E, Botet R, McKay CP, Courtin R (1995) Titan s
geometric albedo: role of the fractal structure of the aerosols. /carus 118, 355-372

Rannou, P., F. Hourdin, and C. P. McKay (2002), A wind origin for Titan’ s haze
structure, Nature, 418, 853—-85

— Haze advected upward from the main haze layer forms the detached haze

Lavvas, P., R. V. Yelle, and V. Vuitton (2009), The detached haze layer in Titan’ s
mesosphere, Icarus, 201, 626—-633

— The detached haze is a signature of the aggregation process

Rodin AV, Keller HU, Skorov YuV, Doose L, Tomasko MG (2009) Microphysical
processes in Titan haze inferred from DISR/Huygens data. In preparation

— Monomer size depends on charging, not a function of altitude

Some pros and cons will be presented below regarding the detached haze



Laboratory Simulations

 Haze formation is a complex set of processes,
both chemical and physical, and depend on
altitude

* Laboratory simulations may reveal their nature

* |ssues include the relative importance of C-H
versus N-H-C bonds, functional groups
(polyacetylenes, PAHs, HCN-related
compounds, etc.), rates of formation, size and
shapes of solid products, refractive index,
solubility,...




A Classic Laboratory Example

From Bar Nun et al., (1988) Shape and
Optical Properties of Aerosols Formed by
Photolysis of Acetylene, Ethylene, and
Hydrogen Cyanide, J. Geophys. Res., 93,
8383-8387

This work provided impetus for my
1,509 10¢n WD10 investigation of the optical properties of
vig. 1a aggregate particles which led to

West, R.A., and Smith, P.H., (1991) Evidence
for aggregate particles in the atmospheres of
Titan and Jupiter. Icarus 90, 330-333

4118 o 16KU K16,0800 IFm W01
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Lab Parameters vs. Titan
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Fig7 Plot of the temperature and pressure parameters for various tholin generation methods. Note that

few methods fall along the profile of Titan’s atmosphere.

Source:

Titan Tholins: Simulating Titan Organic Chemistry in the Post Cassini-Huygens

Era, submitted to Chemical Reviews

Morgan L. Cable, Sarah M. Horst, Robert Hodyss, Patricia M. Beauchamp, Mark A.

Smith and Peter A. Willis
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The Evolution of Titan’s
Stratospheric Haze near
Equinox 2009

Robert West, Jonathan Balloch, Philip
Dumont, Panayotis Lavvas, Ralph
Lorenz, Pascal Rannou, Trina Ray and
Elizabeth Turtle

Geophysical Research Letters 38,
L06204, 2011




Voyager 2 Epoch (1981)

Image analyzed by Rages and Pollack (1983)
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Altitude of the detached haze
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Haze Profiles 2006 and 2010
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Model of Rannou et al. (2002)
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Most Recent Image
2011 DOY 141




Items of Note
Titan detached haze at L near 20°

* The detached haze is visible as a continuous
entity everywhere south of the north polar
vortex with a small (~13 km) difference in
equator-pole altitude.
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Previous and New Measurements
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Detached Haze Evolution:
Conclusions

The detached haze has undergone a large-amplitude seasonal variation in
altitude and has returned to the altitude where it was observed in
Voyager images taken almost 30 years (one Saturn year) earlier.

The collapse of Titan’s detached haze is most likely a feature of the
breakdown of a global meridional cell in the high stratosphere at equinox
as solar heating becomes symmetric. This feature was predicted by the
Rannou et al. (2002) circulation/haze model.

The detached haze, a scientific curiosity for almost 30
years, has become an incisive test for Titan circulation and
haze microphysical models.

* There are problems with the Rannou et al. model which calls for the
dissolution of the detached haze simultaneous with its drop in altitude, so far
not seen.

* The microphysical model of Lavvas et al. (2009) does not predict altitude
change but better accounts for the nearly constant altitude of the detached
haze as a function of latitude. It must be coupled with a dynamical process to
account for the observed seasonal behavior.




