Space Physics Handout 4 : Frozen-in flux, conservation equations

Conservation of magnetic flux in a magnetic flux tube

If C; is a closed line in space, and S, is a surface subtended by C;, magnetic field lines which are along C,
define a magnetic field tube, or magnetic flux tube. (The restriction on defining C, is that, if dl, is an
infinitesimal vector tangent to C,, then _Bxd_’»l §Oat all points on C;). The magnetic flux through S, is

A

where ﬂl is the unit normal vector to S; and dS,; is an infinitesimal element of it. The su;\face of the flux
tube is defined by the collections of magnetic field lines which are along C; . Therefore if 0 is a unit
normal to the surface S of the flux tube, then 8. -’\ =0 everywhere on the surface of the flux tube. Let C,
be another closed lirie aiong the fiux tube, defined in the same way as C, , that'is, having the same magnetic
field lines along it as C, . The line C, subtends the surface S,; the magnetic flux through S, is

@2. = ‘g 6.?_\,,C>L$L

magnetic ficld lines n

N is unit normal everywhere on
walls of flux tube, so that B-h=0

Definition of a magnetic flux tube

Let S¢ot be the closed surface defined by Sy, S, and the surface S of the flux tube delimited by C; and C; ;
the volume enclosed by Sg is defined by V. The magnetic flux @to(r through S¢et is zero, as

B - ; €. Adsw = [ VBV =0
wt
given that V.8 =0 everywhere.
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( A\ denotes here the — outward pointing — unit normal to Sg, therefore we can set for Ay = -A n =

over S; and S, respectively).

The total flux ﬁmf is made up of the fluxes (counted positive outward over S¢g¢ ) of the fluxes through
Si, S, and the surface S of the flux tube:

Pt = -Dir Qo+ f_g,.@olé =0

where the integral, calculated over the walls of the flux tube is f B.n A d4 =0 by the definition of that
surface ( B being tangent to it everywhere).

We now have the result: @‘ = @L

—

which shows that the magnetic flux along a flux tube is constant (this is called the strength of the flux tube).
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The magnetic induction equation

Express the electric field vector from Ohm’s law as:

£ = -uxB - %%

and substitute it into (M3):

%%, - cpNE = O (-«.’ME fj/é)

We also use (M1): V)\g = ’u‘)j—

to substitute for the current density vector to get :

%-%:— - '\7><(~gx§ +3/0> = V:C(\L‘XS) - VK(?Y, Vx E\

where 7 ;J,ufb/ is the magnetic diffusivity. Using the vector identity below
ox(ax8) = v(ve) -8

and noting from (M2) V.8 =9 , we get the magpnetic induction equation:

%%_. Vx(d;xﬁ) + 7L V'E

]

This equation controls the evolution of the magnetic field as a function of time. The first term on the right
hand side arises from the motion of the plasma perpendicular to the magnetic field. The second term on the
right controls the diffusion of the magnetic field, but it is only relevant when the plasma conductivity is
finite. The ratio of the first term to the second term on the right hand side of the induction equation is the
magnetic Reynolds number defined as

Lo Jo

R = S0 = M Bl

where [, and Uc are the characteristic length scale and characteristic velocity, respectively, in the
plasma.

For most space plasmas, Ran7714 everywhere, except in the vicinity of current sheets (which often separate
plasmas of different origins), so that the form of the induction equation used is

%% = Tx (\IK_E_> O)

Note that it is this form which is used when Ohm’s law is /-:—\ = ‘Q?(E , that is, when the electrical
conductivity of the plasma is infinity. This is the magnetohydrodynamic (MHD) approximation; it holds in
most space plasmas, except in the vicinity of current sheets.

In the MHD approximation, the magnetic field is “frozen” into the plasma; magnetic flux is carried,
unchanged, in a given parcel of plasma moving with velocity v. Correspondingly, in an infinitely conducting
plasma, there is no electric field in the frame moving with the plasma, E can only arise as the result of the
Lorentz transformation.

In the following, a proof of the “freezing-in” theorem is given, following the proof given by George Sisoce,
Solar System Magnetohydrodynamics, 1982.
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The magnetic flux, through a closed loop 1 is given by, as above Q - f . @_ "

7S

130

where dS is an element of the area on any surface which has (« as its perimeter.
Gauss’ theorem and Maxwell’s equation V.B =0 ensure that the magnetic flux is the same through any
surface sharing a common perimeter.

n

[(1+ At)

dl

Definition of surfaces for the proof of the "freezing in * theorem.

On the figure above, a closed loop of plasma elements is shown at two successive instants, at time t and time
t +At. The two closed loops are 1I(t) and 1(t +At). An enclosed volume is formed by the two surfaces S; and
S, that have 1(t) and I(t +At) as their perimeters, and the generalised cylinder, S; , formed by the motion
of the closed loop of plasma elements on 1, as they move from the position of I(t) by vAt to form I(t +4t).
Wecall & the magnetic flux enclosed by the closed loop of plasma elements on I, and denote by the
subscripts 1, 2 and 3 the flux of the magnetic field through the surfaces S, S, and S;. If the unit normal
vectors to the two surfaces S;, S, are chosen to lie on the same side of each surface with respect to the flow
of plasma (as shown in the figure), then the rate of change of the magnetic flux is,

d& Ac -.‘:; & (4+ AY) —g e

g

—

ac At

because of the condition V.B =0 , the net magnetic flux through the three surfaces S,, S, and S; which form
a closed volume must be zero at any time. In particular,

— i leea) + Dleray) +dy =0

where the negative sign of the @‘ term arisgs because we have to take the outward oriented normal to S;. As
a very important note here, we have used @ g3without specifying any time dependence; this is begause S; is a
geometrically defined surface, once S, S; have been defined. We can eliminate @ C €+ At) between
equations (12) and (13) to give (implicitly for At >0 ):

av B (tead) — Qur) -4

T3 Ac

:{ L [Beeeas) )] Ak - {8 ‘30‘3\5 2)

We can rewrite this in terms of the flux integrals

d® . L
at At

i
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For the first integral, we have
Avm 4 f\
A€ f [ Bl&ra) - gw)] ads L e % ds (3)

The second integral in ( 2) can also be converted to an integral over the surface S,. For this, we write

fg.i,‘\ds = fﬁ. (dk » U4t)
337 210

A
because AckS =dL x wd& a5 can be verified with reference to the figure. We also have, from the rules
lating to the mixed - and dot products of the th t 0 Ai
relating to the mixed cross- and dot products of the three vectors B. (d!x ﬂL‘A't) - L¢XE> .dgAt

so that we get, by applying Stokes’ theorem relating line integrals to surface integrals

[ 82ds = [ Bt os) = [ (9xB).dt &k :I[Vx(uxﬁ)] A dls At
3 ud L) (4)

Reassembling equation (2 ), using ( '3) and (4 ), we get

O@ f"~ ads - j;f[w(gxgﬂ.acxg At
£

and by combining the integrals over S; :

do 2B _ . g]f\dﬁ
£ = L {O‘E V)‘.(\[,ﬁ..) n

Thus, the frozen-in condition:

dd
e

Follows immediately from equation (| ).

=0

This means that the plasma within a magnetic flux tube remains always in that flux tube, as the plasma
moves. In addition, plasma elements that are linked by a magnetic field line will always remain on that
magnetic field as the plasma and magnetic field line move. So that we can say again that in the MHD
approximation (when the magnetic Reynolds number Bax 271 ), the plasma and the magnetic field appear to
be “frozen together”, in other words, the magnetic field lines are “frozen into” the plasma. This result was
first obtained by Hannes Alfven in 1942 who later received the Nobel Prize for Physics. A fundamentalily
analogous result was known in the last century, when Kelvin and Helmholtz derived the conservation of
vorticity in fluids

We need to be careful though, although the concept is very useful and we will apply it during the course, it is

only correct if the assumptions leading to the MHD approximation are satisfied, and so it must be used with
care.

Conservation equations in space plasmas

During lectures we defined the time rate of change of any quantity that moves with a plasma as being given
by the material derivative where we follow the notation normally used in fluid mechanics:

% - Bﬁ Y
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Nature of the | x B force
Using Maxwell’s equation (M 1), we can write:

pepe - 0(5) ¢ L EY)E

B 7

This follows from the following general vector identity

c.9)F - %[vx(fxq;) COFQ) - F (7o) r 6 (V.F) - F (X&)
- O x(VXE )
where F and G are arbitrary vectors. We have substituted F =G = B, and also taken into consideration that
V.-B=0.
A

Introduce b as the unit vector along the magnetic field line at a specified point (therefore tangent to the
field line at that point) and s as the parameter measuring the distance along the field line, so that

§ =g lg where B is the magnitude of the magnetic field at that point. Then, because (ﬁ ,V) =B @/03
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we get,

A
N

We define as the principal normal to the magnetic field, then 2—?— = where R, is the radius of
r o5

gm\t»

curvature of the field line at that point. Finally we get for thej xB force expression
(gl— g8 &
JxE = w} e ) ¥ RE

The various terms on the right hand side of this equation were discussed in lectures. Finally the equation of
motion of the plasma, taking into account the plasma pressure and the j _] x B force can be wrltten as:

. n
dg - = - =z tn
& vhejxB = Wprpe) b &(j) b
Jax P q
Where the ratio of the plasma pressure to the magnetic pressure is defined as the “plasma beta”,
b B
/ />8 Bt
which represents the relative importance of the forces exerted on the piasma by the pressure gradients in the
plasma and the magnetic field.

The effects of the magnetic tension and magnetic pressure forces were discussed in lectures. If we think back
to frozen-in field effects, where we have field lines moving and convecting with the plasma, in fact plasma
flow cannot distort the magnetic field with impunity since the resulting magnetic pressure and tension force
will react back on the plasma to change the motion. In general, the magnetic force tends to oppose the
plasma motion which tends to cause compression or rarefaction of the field or which tends to twist it up.

Conservation of energy
This can be quite a complex topic and for simplicity it can in general be assumed that the plasma acts as an

ideal gas and that the equation of state is )
d ( blps
ae LT

where v is the adiabatic exponent.



